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Abstract

Two-dimensional crack problems of homogeneous, anisotropic, linear elasticity are solved using the Riemann±

Hilbert method. To this end, the Riemann±Hilbert problem of line-discontinuity is formulated for anisotropic plane
problems and the necessary parameters and functions are identi®ed. For illustration, the method is applied to obtain
the complete stress ®eld and the stress intensity factors for a crack in an in®nite anisotropic plate which is loaded on

a part of one of its faces. Then, the well-established method of continuously distributed edge-dislocations is
considered and illustrated via some example problems; e.g., an in®nite anisotropic plate under uniform far®eld loads
containing: 1. a closed frictional crack and a pair of arbitrarily-located single edge-dislocations, and 2. an in®nite
row of equally-spaced parallel open cracks.

The illustrative examples reveal that the ®rst method o�ers an e�ective solution technique for problems where
unbalanced tractions are applied on crack surfaces, whereas for problems with self-equilibrating loads applied on the
crack faces, the second method is generally well suited. In addition, the method of resultant forces along the crack is

discussed and its formulation in terms of the dislocation density functions and also the crack-opening displacements
(which is new) is presented. The solutions to some of the example problems are provided in some detail, and for
others, just the key formulae (e.g., stress functions and stress intensity factors) are calculated and analyzed. In brief,

this paper presents the generalization of the Riemann±Hilbert method from isotropic to anisotropic in-plane
elasticity problems, and also provides a collection of certain basic two-dimensional anisotropic crack problems;
some of the results here are also new. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

To simplify the analysis, isotropic elasticity is usually assumed in many fracture mechanics problems.
Electronic packaging and devices usually include strongly anisotropic materials; this is especially the case
of single crystals. While anisotropy introduces additional material parameters (see, e.g. Simmons, 1971
for elastic constants of di�erent single crystals), it does render the basic ®eld equations better structured
and hence, simpler to solve. A large class of analytical solutions is based on the fundamental work of
Muskhelishvili (1953), followed by Savin (1961), and Lekhnitskii (1963); see Sneddon (1961) for a survey
of the earlier work. For isotropic materials, crack problems have been extensively studied theoretically,
numerically, and experimentally; see, e.g., Erdogan and Sih (1963), Liebowitz (1968), Bilby and Eshelby
(1968), Rice (1968, 1972), and Sih (1973). In contrast, less work has been done for cracks in anisotropic
solids, some of which are: Eshelby et al. (1953), Sih et al. (1965), Willis (1966), Tsai and Wu (1971),
Barnett and Asaro (1972), Wu (1974), Delale and Erdogan (1977), Hoenig (1982), Nemat-Nasser and
Hori (1987), Sham and Zhou (1989), Miller and Stock (1989), Obata et al. (1989), Suo (1990), Ni and
Nemat-Nasser (1991), Gao and Chiu (1992), Azhdari (1995), and Azhdari and Nemat-Nasser (1996a,
1996b, 1998). Section 21 of the book by Nemat-Nasser and Hori (1993), and a comprehensive book by
Ting (1996) are among the more recent general accounts of anisotropic elasticity, emphasizing linear
fracture mechanics. Finally, analytical/numerical and numerical solution methods such as the weight
function, ®nite-element, and boundary-element methods are studied by many researchers; for a review
and references, see, e.g., Aliabadi and Rooke (1991).

In this paper, we examine two solution methods for cracks in anisotropic planes. The ®rst solution
method is based on the Hilbert problem, as generalized by Obata et al. (1989), providing analytical
solutions for cracks subjected to unbalanced prescribed tractions on their faces. The second solution
method is the well-known continuously distributed dislocations (CDD) technique; see a comprehensive
book by Weertman (1996). Moreover, in the context of the second method, the resultant-force (in
contrast to the traction) method on the crack line is also discussed. In addition, a collection of solutions
of cracks in two-dimensional anisotropic planes is provided (see the last paragraph of this section).

View a crack as a line in a plane, across which some physical quantities may admit jump
discontinuities. This line has upper and lower faces, and the boundary conditions for the crack can be
prescribed on these faces independently. Thus, a crack can be formulated as a Hilbert problem. This
problem and its application are well established for isotropic plane problems; see Muskhelishvili (1953)
and Savin (1961). However, its application to the anisotropic cases has received less attention. Sih and
Liebowitz (1968) applied the Hilbert problem to anisotropic planes containing line discontinuities. A
general formulation (for loading as well as material symmetry) is considered in the present work. In
Section 3, the complete formulation and the corresponding parameters are presented for both traction-
and displacement-boundary conditions. Note that this solution method (i.e., formulating a crack as a
Hilbert problem) applies even when the crack surfaces are subjected to di�erent boundary conditions.
Problems of this nature have been solved using di�erent methods such as conformal mapping; see, e.g.,
Savin (1961) and Bowie (1973).

Next, consider modeling a crack by a continuously distributed dislocations along its line (CDD
method); see the original works by Stroh (1958, 1962), Willis (1970), and a recent book by Hills et al.
(1996). Note that the CDD method is used for other applications, such as, modeling the crack-tip
plasticity; see, e.g., Atkinson and Kanninen (1977) and Horii and Nemat-Nasser (1986). For modeling a
crack, the CDD method involves the following steps: 1) modeling the discontinuity across the crack
surface by using a continuous distribution of edge dislocations, b(s )=bx(s )+iby(s ), where s measures
length along the crack line; 2) formulating the corresponding stress ®eld; 3) calculating the tractions
leading to equilibrium integral equations; and 4) solving the resulting system of integral equations for
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the unknown b(s ), often, numerically by a collocation method. Note that the above steps are based on
the superposition principle; see, e.g. Bueckner (1958).

The crack-surface boundary conditions, can alternatively be formulated by considering the resultant
forces on the crack surfaces (in contrast to crack-surface tractions ). The primary unknown in these
methods can be the dislocation density or the crack opening displacement (COD); each may be
formulated using either the crack-surface tractions or the crack-surface resultant-forces. Thus, the CDD
method may fall into four categories; for references to these four methods, see, e.g. Lo (1978), Cheung
and Chen (1987), Kaya and Erdogan (1987), and Azhdari (1995), respectively. Note that the CDD
method is also referred to as integral transforms/continuous dislocations method.

This paper is organized as follows. First, in Section 2, a summary of the basic equations of
anisotropic linear elasticity, required for the solution of fracture problems is provided. In Section 3, the
Hilbert method is generalized for application to anisotropic elasticity problems. As an illustration, the
problem of a crack partially loaded on its upper surface (unbalanced boundary conditions) is solved in
Section 3.1. This solution is then extended to the case of a fully loaded upper face, and to the case of a
pair of concentrated forces applied at an arbitrary point on the upper face (Sections 3.2 and 3.3). Then,
the results of Sections 3.1, 3.2 and 3.3 are modi®ed to obtain the corresponding solution for a half-
plane. Section 4 deals with the CDD method which is illustrated by 5 crack problems with balanced
loads on their faces; those are as follows. Section 4.1 considers the Green functions for an open crack
with one (or a pair of centrally symmetric) arbitrarily-located edge-dislocation. The same problems, but
for a closed crack with frictional and cohesive interface, are considered in Section 4.2. Section 4.3
addresses the problem of a crack dislocated at one end, with and without far®eld loads, including a
partially closed frictionless case. In Section 4.4, the problem of an open crack partially loaded by self-
equilibrating tractions on its faces is solved, including the case of fully loaded faces, as well as when
concentrated forces are applied to an arbitrary point on both faces. Section 4.5 focuses on an in®nite
row of periodic parallel open cracks, under uniform far®eld loads (tension and shear). Then, the
resulting coupled singular integral equations are numerically solved. An approximate formula is also
given for estimating the stress intensity factors (SIFs). Section 5 considers the method of the resultant
force, in terms of both the dislocation density function and the crack-opening displacement, as the
primary unknowns. Finally, to render the paper self-contained, necessary topics are included in
Appendices A±D. Most of the formulation and results of Sections 3, 4.2, 4.3, 4.5 and 5 are new.

2. Introductory formulation of anisotropic elasticity

Consider plane problems in anisotropic, homogeneous, linearly elastic solids. For the conditions
where the in-plane and out-of-plane deformations decouple, the strain±stress relations in the x, y, z-
coordinate system (Fig. 1) are

exx � C11sxx � C12syy � C13szz � C16sxy, �2:1a�

eyy � C12sxx � C22syy � C23szz � C26sxy, �2:1b�

ezz � C13sxx � C23syy � C33szz �2:1c�
and

gxy � C16sxx � C26syy � C66sxy, �gxy � 2exy�, �2:1d�
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where Cij=Cji; i, j= 1, 2,..., 6, are the relevant elements of the compliance matrix of the material in the
x, y-coordinate system; see Appendix A for the relationship between the Cij's and the engineering
material constants. Note that for plane-stress conditions (szx=szy=szz=0), Eqs. (2.1a), (2.1b), (2.1c)
and (2.1d) is applicable, whereas for plane-strain conditions (ezx=ezy=ezz=0), the Cij's of Eqs. (2.1a),
(2.1b), (2.1c) and (2.1d) should be replaced by CijÿCi3Cj3/C33.

Savin (1961) and Lekhnitskii (1963) have shown that the problems of two-dimensional anisotropic
elasticity can be conveniently formulated in terms of two independent analytic functions, f(z1) and
c(z2). The complex variables, z1 and z2, are

zj � x� sj y, �2:2a�
with

sj � aj � ibj, where bj > 0, j � 1, 2: �2:2b�

The parameters s1 and s2 are the roots of the characteristic equation (derived from the compatibility
equation),

C11s
4 ÿ 2C16s

3 � �2C12 � C66�s2 ÿ 2C26s� C22 � 0: �2:3�
Due to the positive-de®niteness of the elastic energy, the characteristic equation has either complex or

purely imaginary roots which are pairwise each other's complex conjugate, i.e.,

s3 � �s1, s4 � �s2 �) z3 � �z1, z4 � �z2; �2:4�
without loss of generality, we choose s1 and s2 such that their imaginary parts are positive; see Eq.
(2.2b). In Appendix A, the relations among Cmn, sj, aj and bj are given. For the isotropic case,
s1 � s2 � i � �������ÿ1p

, and the above formulation ceases to hold; the solution is valid only for s1 $ s2.
Nevertheless, by selecting s1=(1+e )i and s2=(1ÿe )i (e<<1), the anisotropic formulation can be applied
to the isotropic case as well; this is accomplished by setting, e.g. E11/E22=1.000001 (see Appendix A).

The stress, displacement, and the resultant force ®elds then are

sxx � 2 Real
�
s21F�z1� � s22C�z2�

�
, �2:5a�

syy � 2 Real �F�z1� �C�z2��, �2:5b�

sxy � ÿ2 Real �s1F�z1� � s2C�z2��, �2:5c�

ux � 2 Real
�
p1f�z1� � p2c�z2�

�
, uy � 2 Real �q1f�z1� � q2c�z2��, �2:5d�

Fig. 1. Body and material coordinate systems.
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fx � 2 Real �s1f�z1� � s2c�z2�� � cx and fy � ÿ2 Real �f�z1� � c�z2�� � cy, �2:5e�
where

pi � C11s
2
i � C12 ÿ C16si, qi � C12si � C22

si
ÿ C26, �2:6�

F(z )=f '(z ), C(z )=f '(z ) and cx and cy are the resultant-force constants to be determined.
If the coordinate system x±y is rotated (counter-clockwise) by an angle o to a new coordinate system

z±Z, then the transformed potential functions will be

F̂�z1� � �cos o� s1 sin o� 2F�z1� and Ĉ�z2� � �cos o� s2 sin o� 2C�z2�: �2:7a�
Moreover, the stresses in the new coordinate system are (see Azhdari, 1995)

szz � 2 Real

h
ŝ21 F̂�z1� � ŝ22 Ĉ�z2�

i
� 2 Real

�
F�z1�L1 �C�z2�L2

�
, �2:8a�

sZZ � 2 Real
�
F̂�z1� � Ĉ�z2�

�
� 2 Real

�
F�z1�M1 �C�z2�M2

� �2:8b�

and

szZ � ÿ2 Real
�
ŝ1F̂�z1� � ŝ2Ĉ�z2�

�
� 2 Real

�
F�z1�N1 �C�z2�N2

�
, �2:8c�

where

Lj � �sj cos oÿ sin o� 2, Mj � �cos o� sj sin o�2, �2:9a�

Nj � �cos o� sj sin o��sin oÿ sj cos o� and ŝj � sj cos oÿ sin o
cos o� sj sin o

: �2:9b�

Note that Eq. (2.9b) is the transformation formula for the roots sj of Eq. (2.3).
Within most parts of this work, cracks are modeled as a continuous distribution of edge dislocations

along their lines. For that, the solution of a single edge-dislocation b0 � �b0x, b0y� located at an arbitrary
point z 0=(x 0, y 0) in an in®nitely extended plate is given below. Such a dislocation generates a stress
®eld at a general point (x, y ) with the following potential functions; see Obata et al. (1989):

FD�x, y; x0, y0� � 1

2piC11

s1b
0
x ÿ b0y
~s1

1

z1 ÿ z01
�2:10a�

and

CD�x, y; x0, y0� � 1

2piC11

s2b
0
x ÿ b0y
~s2

1

z2 ÿ z02
, �2:10b�

where

~s1 � �s1 ÿ s2��s1 ÿ s3��s1 ÿ s4� and ~s2 � �s2 ÿ s1��s2 ÿ s3��s2 ÿ s4�: �2:10c�
Note that z0j � x0 � sj y

0 and ~s3, ~s4, z
0
3 and z04 are complex conjugates of ~s1, ~s2, z

0
1 and z02, respectively.

See Appendix C for comments on single edge dislocation and dislocation density functions.
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3. Riemann±Hilbert problems of line-discontinuity and cracks in anisotropic plates

In two dimensional elasticity, a crack is viewed as an arc across which the displacement ®eld is
suitably discontinuous. On each of the crack faces, concentrated or distributed forces may act. The aim
then is to determine the corresponding elastic ®eld and the crack tip SIFs. For this, various methods can
be used, ranging from the classical mapping-function and Hilbert techniques (Muskhelishvili, 1953 and
Savin, 1961) to the analytical/numerical weight-function method (Bueckner, 1970 and Rice, 1972). For a
plane containing straight cuts, Muskhelishvili (1953) has formulated the corresponding boundary-value
problem in terms of the Hilbert problem. For anisotropic elasticity problems, Sih and Liebowitz (1968)
were the ®rst to mention the Riemann±Hilbert method (denoted as `Hilbert', hereafter), though their
formulation is applicable to only restricted cases. In what follows, we give a general formulation to
solve a problem of line discontinuity by the Hilbert method, within the framework given by Obata et al.
(1989). In order to clearly present the problem and the solution, ®rst, the de®nition of a Hilbert problem
is stated and its corresponding solution for a single discontinuity in a plane is given. Then, for a plane
problem of an anisotropic medium, we perform the required generalization such that this solution is cast
into a Hilbert problem framework.

To illustrate the Hilbert method, a crack in an in®nitely extended anisotropic plate, loaded on a part
of its upper face, is solved; for this simple example, the method of this section provides a complete stress
®eld as well as the SIFs. This solution, along with the examples of the method of continuously
distributed dislocations given in Section 4, shows that when the applied loads on the crack faces are not
balanced, then formulation of the problem by the Hilbert method seems to be more e�ective among
other possible analytical techniques. However, when traction-boundary conditions are symmetric or
anti-symmetric (balanced tractions), the method of continuously distributed dislocations may be used to
solve the corresponding boundary-value problem. At the end of this section, it is shown that the
solution of the example problem can be reduced to the problem of an anisotropic half plane; by letting
the crack length go to in®nity, the upper half of the medium reduces to a half plane loaded on the plane
y=0.

Consider the following case of the Hilbert problem. For a given function, g(s ), de®ned on an arc L
with end points a and b, ®nd a complex-valued potential, G(z ), such that:

G ��s� ÿ tG ÿ�s� � g�s� for s 2 L, �3:1�

where G ��s� � lim
z�4 s

G�z�, G ÿ�s� � lim
zÿ4 s

G�z� and t is a given constant. The general solution of Eq. (3.1),
which is holomorphic on the plane except for the line L, singular at the end points of L, and decaying
to zero at in®nity, is then given by Muskhelishvili (1953) as

G�z� � X�z�
2pi

��
L

g�t�
X ��t��tÿ z� dt� P0

�
, �3:2a�

where

X�z� � �zÿ a�ÿx�zÿ b�xÿ1, x � 1

2pi
log�t�, �3:2b�

X ��t� � lim
z�4 t

X�z� and P0 � constant: �3:2c�

Next, considering Eqs. (3.2a±c), we formulate the Hilbert problem for line discontinuities in an
anisotropic medium.
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Referring to Eqs. (2.5a±e), the stresses and displacements are expressed in terms of two stress
functions, f and c, and their derivatives, F and C, as

syy � F�z1� �C�z2� � F�z1� �C�z2�, �3:3a�

sxy � ÿs1F�z1� ÿ s2C�z2� ÿ s3F�z1� ÿ s4C�z2�, �3:3b�

ux � p1f�z1� � p2c�z2� � p3f�z1� � p4c�z2� �3:3c�

and

uy � q1f�z1� � q2c�z2� � q3f�z1� � q4c�z2�: �3:3d�

The stresses and displacements can be combined to form alternative expressions (these are more suited
to the formulation of the Hilbert problem) as follows:

syy ÿ asxy � �1� as1�Y�z1� � �1� as3�O�z3� � �1� as2�fC�z2� ÿC�z1�g � �1� as4�
�
C�z2�

ÿC�z1�
	
, �3:4a�

ux � auy � � p1 � aq1�y�z1� � � p3 � aq3�o�z3� � � p2 � aq2�fc�z2� ÿ c�z1�g � � p4 � aq4�
�
c�z2�

ÿ c�z1�
	
, �3:4b�

with

Y�z� � y 0�z�, O�z� � o 0�z�, F�z� � f 0�z�, C�z� � c 0�z�, �3:5�

O�z� � �F�z� � 1� as4
1� as3

�C�z�, Y�z� � F�z� � 1� as2
1� as1

C�z�, �3:6a�

o�z� � �f�z� � p4 � aq4
p3 � aq3

�c�z�, y�z� � f�z� � p2 � aq2
p1 � aq1

c�z� �3:6b�

and the parameter a is the root of the quadratic function

D3a2 � 2D2aÿ D1 � 0 �3:7�

(the Dks are de®ned in Appendix A).
Note that the newly de®ned auxiliary functions Y and O naturally inherit the holomorphic properties

of F and C. From Appendix A and Eq. (3.7), a more explicit form for a is as follows:
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a � ÿD22i
������
D0

p
D3

� ÿ�s1s2 ÿ s3s4�2
��������������������������������������������������������������������s1 ÿ s3��s1 ÿ s4��s2 ÿ s3��s2 ÿ s4�

p
s1s2�s3 � s4� ÿ s3s4�s1 � s2�

�
ÿ�a1b2 � a2b1�3i

������������������������������������������������������������
b1b2

ÿ
�a1 ÿ a2� 2 � �b1 � b2�2

�q
b1
�
a2
2 � b2

2

�
� b2

�
a2
1 � b2

1

� ; �3:8�

note that a 4 i for isotropic materials. Moreover, combination of Eqs. (3.8), (2.6) results in the
following identities:

1� as2
1� as1

� p2 � aq2
p1 � aq1

� ÿ1� �as2
1� �as1

� ÿp2 � �aq2
p1 � �aq1

: �3:9�

Since s1 and s2 are distinctive characteristic roots with positive imaginary parts (see Section 2), one
deduces that:

1. the term under the square-root bracket is always positive,
2. a cannot be a real number (for orthotropic materials for which D2=0, a is purely imaginary; see also

Appendix A).

Thus, we can determine a unique set of O and Y in terms of F and C and vice versa; the relations
among di�erent stress functions can be obtained by consideration of Eqs. (3.4a), (3.4b), (3.5), along with
identities of Eq. (3.9). Thus, Eqs. (3.6a,b), yield the following expressions:

F�z� � 1

2
�Y�z� � �O�z��, C�z� � 1

2

1� as1
1� as2

�Y�z� ÿ �O�z��, �3:10a�

f�z� � 1

2
�y�z� � �o�z�� and c�z� � 1

2

p1 � aq1
p2 � aq2

�y�z� ÿ �o�z��: �3:10b�

Note that because of Eq. (3.9), the constant coe�cients in Eqs. (3.6a,b) and (3.10a,b) can be written in
alternative forms. For example, any of the four expressions in Eq. (3.9) could be used as the constant
coe�cient in Eq. (3.10a) or Eq. (3.10b).

Now, consider the complex variable zk=x+(ak+ibk )y and its conjugate �zk � x� �ak ÿ ibk�y: On the
x-axis, where y may approach zero from the upper side (+) or the lower side (ÿ), Eq. (3.4a) takes on
the form

s�yy ÿ as�xy � �1� as1�Y��x� � �1� as3�Oÿ�x�, �3:11a�

and

sÿyy ÿ asÿxy � �1� as1�Yÿ�x� � �1� as3�O��x�: �3:11b�

Note that the rest of the terms in Eqs. (3.4a) and (3.4b) vanish as y goes to zero from either side of the
x-axis. Adding and subtracting both sides of Eqs. (3.11a) and (3.11b), we obtain

��1� as1�Y�x� � �1� as3�O�x��� � ��1� as1�Y�x� � �1� as3�O�x��ÿ

� �syy ÿ asxy�� � �syy ÿ asxy�ÿ �3:12a�

and
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��1� as1�Y�x� ÿ �1� as3�O�x��� ÿ ��1� as1�Y�x� ÿ �1� as3�O�x��ÿ

� �syy ÿ asxy�� ÿ �syy ÿ asxy�ÿ: �3:12b�

Since the right-hand-sides of Eqs. (3.12a) and (3.12b) are known, these equations are two non-
homogeneous Hilbert problems for the two unknown functions (1+as1)Y(x )ÿ(1+as3)O(x ) and
(1+as1)Y(x )+(1+as3)O(x ). The solution to this problem is obtained from Eqs. (3.2a); see also, e.g.
Muskhelishvili (1953).

3.1. A crack in an anisotropic plate loaded on a part of its upper face

Consider a straight crack in an in®nitely extended plane. Some part of the upper surface of this crack
is subjected to normal and shear tractions as shown in Fig. 2; note that the loads on the crack surfaces
are not self-equilibrating. We seek to obtain the stress functions for this problem based on the Hilbert
problem described above. The boundary conditions are as follows:

sÿyy � sÿxy � 0 for ÿ a < x < a, �3:1:1a�

s�yy � ÿp and s�xy � ÿq for b < x < c, �3:1:1b�

s�yy � s�xy � 0 for ÿ a < x < b and c < x < a: �3:1:1c�

Use these boundary conditions in Eqs. (3.12a) and (3.12b) to arrive at

��1� as1�Y�x� � �1� as3�O�x��� � ��1� as1�Y�x� � �1� as3�O�x��ÿ � ÿp� aq �3:1:2a�
and

��1� as1�Y�x� ÿ �1� as3�O�x��� ÿ ��1� as1�Y�x� ÿ �1� as3�O�x��ÿ � ÿp� aq, �3:1:2b�
for b< x< c (otherwise zero). Considering Eqs. (3.1), (3.2a), the solution of the above boundary-value
problem is

�1� as1�Y�z� � �1� as3�O�z� � ÿpÿ aq
2pi

1����������������
z2 ÿ a2
p

(�c
b

���������������
t2 ÿ a2
p

tÿ z
dt� R�z�

)
�3:1:3a�

Fig. 2. An unbalanced loading condition; the upper crack face is subjected to the normal and tangential tractions, p and q, and the

lower crack face is traction-free.
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and

�1� as1�Y�z� ÿ �1� as3�O�z� � ÿpÿ aq
2pi

�c
b

1

tÿ z
dt, �3:1:3b�

where, according to Eqs. (3.2c), R(z )=P0 (constant); this assures that the stresses decay to zero at
in®nity. Eq. (3.1.3b) comes directly from the Plemelj formula. Note that we must choose a proper
branch of

����������������
z2 ÿ a2
p

according to the physical consideration of a line discontinuity problem. The two
de®nite integrals in Eqs. (3.1.3a) and (3.1.3b) are obtained as follows:�c

b

���������������
t 2 ÿ a2
p

tÿ z
dt �

�c
b

t���������������
t2 ÿ a2
p dt� z

�c
b

1���������������
t 2 ÿ a2
p dt� �z2 ÿ a2�

�c
b

1

�tÿ z�
���������������
t2 ÿ a2
p dt

� i
����������������
a2 ÿ c2
p

ÿ i
����������������
a2 ÿ b2
p

ÿ iz

�
sinÿ1

c

a
ÿ sinÿ1

b

a

�

� i
����������������
z2 ÿ a2
p (

tanÿ1
czÿ a2����������������

a2 ÿ c2
p ����������������

z2 ÿ a2
p ÿ tanÿ1

bzÿ a2����������������
a2 ÿ b2
p ����������������

z2 ÿ a2
p

)
�3:1:4a�

and �c
b

1

tÿ z
dt � log

cÿ z

bÿ z
�3:1:4b�

Now, use Eqs. (3.1.4a) and (3.1.4b) to solve Eqs. (3.1.3a) and (3.1.3b) for the two unknown stress
functions Y(z ) and O(z ),

Y�z� � ÿ� pÿ aq�
4p

1

1� as1

�
H�a, b, c, z� ÿ i log

cÿ z

bÿ z
ÿ iP0����������������

z2 ÿ a2
p

�
�3:1:5a�

and

O�z� � ÿ� pÿ aq�
4p

1

1� as3

�
H�a, b, c, z� � i log

cÿ z

bÿ z
ÿ iP0����������������

z2 ÿ a2
p

�
, �3:1:5b�

where

H�a, b, c, z� �
����������������
a2 ÿ c2
p

ÿ
����������������
a2 ÿ b2
p����������������

z2 ÿ a2
p ÿ z����������������

z2 ÿ a2
p

�
sinÿ1

c

a
ÿ sinÿ1

b

a

�

� tanÿ1
czÿ a2����������������

a2 ÿ c2
p ����������������

z2 ÿ a2
p ÿ tanÿ1

bzÿ a2����������������
a2 ÿ b2
p ����������������

z2 ÿ a2
p :

�3:1:5c�

It still remains to determine the unknown constant P0. First, consider the behavior of the functions O
and Y of Eqs. (3.1.5a) and (3.1.5b) at in®nity. For this, recall that, for |z|41,

1����������������
z2 ÿ a2
p � O

�
1

z

�
,

z����������������
z2 ÿ a2
p � 1�O

�
1

z2

�
, log

cÿ z

bÿ z
� ÿcÿ b

z
�O

�
1

z2

�
�3:1:6a�

and
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tanÿ1
czÿ a2����������������

a2 ÿ c2
p ����������������

z2 ÿ a2
p � tanÿ1

c����������������
a2 ÿ c2
p ÿ

����������������
a2 ÿ c2
p

z
�O

�
1

z2

�
: �3:1:6b�

Now, using Eqs. (3.1.6a,b), in Eq. (3.1.5c), we obtain H(a, b, c, z )=O(1/z 2). Hence,

Y�z� � A

z
�O

�
1

z2

�
, with A � pÿ aq

4pi
1

1� as1
�cÿ bÿ P0� �3:1:7a�

and

O�z� � B

z
�O

�
1

z2

�
, with B � ÿpÿ aq

4pi
1

1� as3
�cÿ b� P0�: �3:1:7b�

Integration of the above yields

y�z� � A log z�O

�
1

z

�
and o�z� � B log z�O

�
1

z

�
: �3:1:8�

Based on Eqs. (3.1.8) and (3.10b), we rewrite Eq. (3.4b) as

ux � auy � � p1 � aq1�A log�z1� � � p3 � aq3�B log�z3� � 1

2
� p1 � aq1��Aÿ �B��log z2 ÿ log z1�

ÿ 1

2
� p3 � aq3�� �Aÿ B ��log z4 ÿ log z3� �O

�
1

z

�
: �3:1:9�

This displacement ®eld has to be single-valued; see Eqs. (1.86) and (1.87) of Savin (1961) for a general
discussion of this issue based on the classical expressions of the stress functions F and C. This condition
leads to

� p1 � aq1�Aÿ � p3 � aq3�B � 0: �3:1:10�

Finally, substitute for A and B from Eqs. (3.1.7a) and (3.1.7b) in Eq. (3.1.10) to obtain P0

P0 � �cÿ b�C0, C0 � � p1 � aq1��1� as3� � � p3 � aq3��1� as1�
� p1 � aq1��1� as3� ÿ � p3 � aq3��1� as1� : �3:1:11�

Appendix A provides an explicit expression for C0 in terms of the material constants.
The original stress functions are now calculated via Eqs. (3.10a) and (3.10b) as

F�z� � 1

4p
ps2 � q

s1 ÿ s2

�
H�a, b, c,

z� ÿ i log
cÿ z

bÿ z

�
ÿ cÿ b

8pi

(
� pÿ aq�C0

1� as1
ÿ � pÿ �aq� �C0

1� �as1

)
1����������������

z2 ÿ a2
p

�3:1:12a�

and
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C�z� � 1

4p
ps1 � q

s2 ÿ s1

�
H�a, b, c,

z� ÿ i log
cÿ z

bÿ z

�
ÿ cÿ b

8pi

(
� pÿ aq�C0

1� as2
ÿ � pÿ �aq� �C0

1� �as2

)
1����������������

z2 ÿ a2
p :

�3:1:12b�

Of primary interest are the stress intensity factors (SIFs). Using the original de®nitions of SIFs for the
right crack-tip, from Eq. (3.4a), on the real axis, the SIFs are

KI ÿ aKII � lim
x4a�

��������������������
2p�xÿ a�

p
�syy ÿ asxy�

� lim
x4a�

��������������������
2p�xÿ a�

p
��1� as1�Y�x� � �1� as3�O�x��: �3:1:13�

Using Eqs. (3.1.5a), (3.1.5b), the stress intensity factors are obtained:

KI � ÿ 1

2
������
pa
p

�
pMÿ�a, b, c� � i�cÿ b�

aÿ �a

�
�a� pÿ aq�C0 � a� pÿ �aq� �C0

��
�3:1:14a�

and

KII � ÿ 1

2
������
pa
p

�
qMÿ�a, b, c� � i�cÿ b�

aÿ �a

�
� pÿ aq�C0 � � pÿ �aq� �C0

��
, �3:1:14b�

where

M2 �
����������������
a2 ÿ c2
p

ÿ
����������������
a2 ÿ b2
p

2a

�
sinÿ1

c

a
ÿ sinÿ1

b

a

�
: �3:1:14c�

Similarly, the SIFs at the left crack-tip (x=ÿa ) are given by

KI � 1

2
������
pa
p

�
pM��a, b, c� � i�cÿ b�

aÿ �a

�
�a� pÿ aq�C0 � a� pÿ �aq� �C0

��
�3:1:15a�

and

KII � 1

2
������
pa
p

�
qM��a, b, c� � i�cÿ b�

aÿ �a

�
� pÿ aq�C0 � � pÿ �aq� �C0

��
: �3:1:15b�

As is seen, the derivation of stress functions and the SIFs are quite simple by the present method as
compared with the mapping method (see, e.g., Savin, 1961); in Section 4.4, the case of self-equilibrating
tractions applied on the upper and lower crack faces is presented.

3.2. A crack in an anisotropic plate loaded on its entire upper face

This is a special case of the problem considered in Section 3.1, i.e. when the upper crack surface is
loaded, while the lower one is traction free. Thus, the boundary conditions are:

s�yy � ÿp, s�xy � ÿq for ÿ a < x < a �3:2:1a�

and
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sÿyy � sÿxy � 0 for ÿ a < x < a: �3:2:1b�

In order to obtain the stress functions and the SIFs for this case, all the formulae of Section (3.1) are re-
evaluated for the limiting case of b4ÿa and c4 a. The results are summarized below:

Y�z� � ÿpÿ aq
4p

1

1� as1

�
H�a, z� ÿ i log

zÿ a

z� a
ÿ 2aiC0����������������

z2 ÿ a2
p

�
, �3:2:2a�

O�z� � ÿpÿ aq
4p

1

1� as3

�
H�a, z� � i log

zÿ a

z� a
ÿ 2aiC0����������������

z2 ÿ a2
p

�
, �3:2:2b�

F�z� � 1

4p
ps2 � q

s1 ÿ s2

�
H�a, z� ÿ i log

zÿ a

z� a

�
ÿ a

4pi

(
� pÿ aq�C0

1� as1
ÿ � pÿ �aq� �C0

1� �as1

)
1����������������

z2 ÿ a2
p �3:2:3a�

and

C�z� � 1

4p
ps1 � q

s2 ÿ s1

�
H�a, z� ÿ i log

zÿ a

z� a

�
ÿ a

4pi

(
� pÿ aq�C0

1� as2
ÿ � pÿ �aq� �C0

1� �as2

)
1����������������

z2 ÿ a2
p , �3:2:3b�

where H�a, z� � p�1ÿ z����������
z 2ÿa 2
p � and the SIFs are

KI � 1

2
������
pa
p

�
ppaÿ 2ia

aÿ �a

�
�a� pÿ aq�C0 � a� pÿ �aq� �C0

��
, �3:2:4a�

KII � 1

2
������
pa
p

�
qpaÿ 2ia

aÿ �a

�
� pÿ aq�C0 � � pÿ �aq� �C0

��
�3:2:4b�

and

KI � 1

2
������
pa
p

�
ppa� 2ia

aÿ �a

�
�a� pÿ aq�C0 � a� pÿ �aq� �C0

��
, �3:2:5a�

KII � 1

2
������
pa
p

�
qpa� 2ia

aÿ �a

�
� pÿ aq�C0 � � pÿ �aq� �C0

��
�3:2:5b�

at x=a and x=ÿa, respectively.
To obtain the SIFs for a crack loaded on its two faces by equal and opposite forces (self-equilibrating

loads), assume that the same uniform loading that acts on the upper face acts only on the lower face.
For this case, the SIFs are the same as Eqs. (3.2.4a), (3.2.4b), (3.2.5a) and (3.2.5b), except for a sign
change for the terms involving C0; this sign change ensures the single-valuedness of the displacements.
Superposing the SIFs of the lower-loading case with the upper-loading case, yields the familiar
expressions corresponding to the self-equilibrating uniform loading, i.e.,

KI � p
������
pa
p

and KII � q
������
pa
p �3:2:6�

for both ends (x=ÿa, and x=a ).
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Thus, as stated by Sih et al. (1965) and Barnett and Asaro (1972), for the case of self-balanced
loading on the crack line, the SIFs are independent of the anisotropy of the medium.

3.3. A crack in an anisotropic plate loaded by a point load at an arbitrary point located on its upper face

Consider now, a case where a normal and a tangential point force, ÿP and ÿQ, are applied at an
arbitrary point x=h, ÿa< h< a, located on the upper surface of the crack; see Fig. 2. This is a special
case of the one considered in Section (3.1) for which b4 hÿ and c4 h+. The boundary conditions and
the representation of the concentrated loads are as follows:

sÿyy � sÿxy � 0 for ÿ a < x < a, �3:3:1a�

s�yy � ÿp, s�xy � ÿq for hÿ eRxRh� e, �3:3:1b�

lim
e40
�2ep� � P, lim

e40
�2eq� � Q: �3:3:1c�

In order to obtain the stress functions and the SIFs for this case, all the formulae of Section 3.1 are
modi®ed for the limiting case of b 4 hÿ and c 4 h+, according to Eqs. (3.3.1b) and (3.3.1c). For
O(e 2)=0, this limiting procedure changes functions H and M to

H�a, b, c, z�2i log
cÿ z

bÿ z
�) 2ei

zÿ h

 
i

����������������
a2 ÿ h2
p����������������
z2 ÿ a2
p 31

!
, M2�a, b, c��)22e

����������
a3h
p
a2h

: �3:3:2�

Thus, the stress functions of Section (3.1) become

Y�z� � ÿ�Pÿ aQ�
4p

i

1� as1

(
1

zÿ h

 
i

����������������
a2 ÿ h2
p����������������
z2 ÿ a2
p � 1

!
ÿ C0����������������

z2 ÿ a2
p

)
, �3:3:3a�

O�z� � ÿ�Pÿ aQ�
4p

i

1� as3

(
1

zÿ h

 
i

����������������
a2 ÿ h2
p����������������
z2 ÿ a2
p ÿ 1

!
ÿ C0����������������

z2 ÿ a2
p

)
, �3:3:3b�

F�z� � i

4p
Ps2 �Q

s1 ÿ s2

1

zÿ h

 
i

����������������
a2 ÿ h2
p����������������
z2 ÿ a2
p � 1

!
ÿ 1

8pi

�
Pÿ aQ
1� as1

C0 ÿ Pÿ �aQ
1� �as1

�C0

�
1����������������

z2 ÿ a2
p , �3:3:4a�

C�z� � i

4p
Ps1 �Q

s2 ÿ s1

1

zÿ h

 
i

����������������
a2 ÿ h2
p����������������
z2 ÿ a2
p � 1

!
ÿ 1

8pi

�
Pÿ aQ
1� as2

C0 ÿ Pÿ �aQ
1� �as2

�C0

�
1����������������

z2 ÿ a2
p �3:3:4b�

and the SIFs change to

KI � 1

2
������
pa
p

(
P

������������
a� h

aÿ h

r
ÿ i

aÿ �a

�
�a�Pÿ aQ�C0 � a�Pÿ �aQ� �C0

�)
, �3:3:5a�
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KII � 1

2
������
pa
p

(
Q

������������
a� h

aÿ h

r
ÿ i

aÿ �a

�
�Pÿ aQ�C0 � �Pÿ �aQ� �C0

�)
�3:3:5b�

at x=a, and

KI � 1

2
������
pa
p

(
P

������������
aÿ h

a� h

r
� i

aÿ �a

�
�a�Pÿ aQ�C0 � a�Pÿ �aQ� �C0

�)
, �3:3:5c�

KII � 1

2
������
pa
p

(
Q

������������
aÿ h

a� h

r
� i

aÿ �a

�
�Pÿ aQ�C0 � �Pÿ �aQ� �C0

�)
�3:3:5d�

at x=ÿa.
Next, let us compare Eqs. (3.3.5a±d) with the analogous results in the literature. Considering the form

of the parameters a and C0, (Eqs. (3.8) and (3.1.11)), it can be shown that the SIFs in Eqs. (3.3.5a) and
(3.3.5b), which are for a general anisotropic case, are exactly the same as Eq. (38) of Sih et al. (1965)
derived by the mapping method (note that they do not consider the tangential force Q ). For the
orthotropic cases reported in Appendix A, Eqs. (3.3.5a) and (3.3.5b) reduce to

KI � 1

2
������
pa
p

(
P

������������
a� h

aÿ h

r
�QCI

)
and KII � 1

2
������
pa
p

(
Q

������������
a� h

aÿ h

r
� PCII

)
, �3:3:6a�

where

CI � 1

2b0

"
C12

C11

1

a2
0 � b2

0

� 1

#
and CII � ÿ 1

2b0

�
C12

C11
� a2

0 � b2
0

�
, �3:3:6b�

or

CI � 1

b1 � b2

�
C12

C11

1

b1b2
� 1

�
and CII � ÿ 1

b1 � b2

�
C12

C11
� b1b2

�
�3:3:6c�

for s1=a0+ib0 and s2=ÿa0+ib0 or s1=ib1 and s2=ib2, respectively. Note that Eq. (3.3.6a) does not
agree with Eq. (40) of Sih et al. (1965) because their Eq. (39) contains a minor error, i.e. the last term of
Eq. (39) must change from `+1' to `+2'. It is noteworthy that, according to Eq. (3.3.6a), in an
orthotropic plane, if only a normal (tangential) force acts at any point on the crack face, it creates only
Mode-I SIF (Mode-II SIF) which is independent of the material properties. Moreover, using the explicit
form of a and C0 given in Appendix A, Eqs. (3.3.5a±d) reduce to the ones derived by Sih and Liebowitz
(1968) for the isotropic case, which are

KI � 1

2
������
pa
p

(
P

������������
a� h

aÿ h

r
�Q

kÿ 1

k� 1

)
and KII � 1

2
������
pa
p

(
Q

������������
a� h

aÿ h

r
ÿ P

kÿ 1

k� 1

)
at x � a; �3:3:7a�

KI � 1

2
������
pa
p

(
P

������������
aÿ h

a� h

r
ÿQ

kÿ 1

k� 1

)
and KII � 1

2
������
pa
p

(
Q

������������
aÿ h

a� h

r
� P

kÿ 1

k� 1

)
at x � ÿa, �3:3:7b�
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where the forces P and Q are assumed to be applied at point x=h located on the upper crack surface,
and k=3ÿ4n and k=(3ÿn )/(1+n ) for plane-strain and plane-stress conditions, respectively.

Similar to the discussion given in Section 3.2, if the concentrated forces are applied only on the lower
crack surfaces, then the SIFs of Eqs. (3.3.5a±d) remain the same, except for a sign change for all the
terms containing C0. Considering this fact, the SIFs for the case where both crack surfaces are loaded
by concentrated forces of equal magnitude but opposite signs, (balanced forces) are

KI � P������
pa
p

������������
a� h

aÿ h

r
and KII � Q������

pa
p

������������
a� h

aÿ h

r
at x � a; �3:3:8a�

KI � P������
pa
p

������������
aÿ h

a� h

r
and KII � Q������

pa
p

������������
aÿ h

a� h

r
at x � ÿa: �3:3:8b�

Eqs. (3.3.5a±d), Eqs. (3.3.6a), Eqs. (3.3.7a,b), and (3.3.8a,b) are the corresponding Green functions.
They are used to calculate the SIFs at the crack tips due to the unbalanced (Eqs. (3.3.5a±d), Eqs.
(3.3.6a), (3.3.7a,b)) and/or balanced (Eqs. (3.3.8a,b)) forces on the crack line; see also Section 4.4. As an
example, consider distributed normal and tangential tractions, p(x ) and q(x ), applied on the upper
surface (between points u and v) of the crack. The resulting SIFs at the right tip are

KI � 1

2
������
pa
p

�v
u

8<:p�z�
������������
a� z
aÿ z

s
ÿ i

aÿ �a

�
�a� p�z� ÿ aq�z��C0 � a� p�z� ÿ �aq�z�� �C0

�9=;dz �3:3:9a�

and

KII � 1
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������
pa
p

�v
u

8<:q�z�
������������
a� z
aÿ z

s
ÿ i

aÿ �a

�
� p�z� ÿ aq�z��C0 � � p�z� ÿ �aq�z�� �C0

�9=;dz: �3:3:9b�

3.4. A half-plane loaded on its free surface (the plane y= 0)

As mentioned earlier, one advantage of the Hilbert formulation is that it can be used to solve the
problem of a crack loaded only on one of its faces. The results may also be used to generate solutions
for a half-plane subjected to various surface tractions. For example, taking the limit of Eqs. (3.1.12a),
(3.1.12b), (3.2.3a), (3.2.3b), (3.3.4a) and (3.3.4b), as `a' goes to in®nity, yields the solution for a half-
plane ( yr0) loaded: on a ®nite part of its surface (b R x R c and y=0), on its entire surface (ÿ1R x
R 1 and y = 0), or at a single point on its surface (x=h and y = 0), respectively. For this, the
following results are helpful:

limit
a41

"
tanÿ1

czÿ a2����������������
a2 ÿ c2
p ����������������

z2 ÿ a2
p ÿ tanÿ1

bzÿ a2����������������
a2 ÿ b2
p ����������������

z2 ÿ a2
p

#
� i log

cÿ z

bÿ z
for y < 0 �3:4:1a�

and

limit
a41

"
tanÿ1

czÿ a2����������������
a2 ÿ c2
p ����������������

z2 ÿ a2
p ÿ tanÿ1

bzÿ a2����������������
a2 ÿ b2
p ����������������

z2 ÿ a2
p

#
� ÿi log

cÿ z

bÿ z
for y > 0 �3:4:1b�
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Using these, the stress functions (Eqs. (3.1.12a), (3.1.12b), (3.2.3a), (3.2.3b), (3.3.4a) and (3.3.4b)) are
reduced to

F�z� � ÿi ps2 � q

2p�s1 ÿ s2� log
cÿ z

bÿ z
, C�z� � ÿi ps1 � q

2p�s2 ÿ s1� log
cÿ z

bÿ z
, �3:4:2�

F � ps2 � q

2�s1 ÿ s2� , C � ps1 � q

2�s2 ÿ s1� , �3:4:3�

F�z� � i

2p
Ps2 �Q

s1 ÿ s2

1

zÿ h
and C�z� � i

2p
Ps1 �Q

s2 ÿ s1

1

zÿ h
�3:4:4�

for the upper plane ( y > 0, which is loaded). For the lower plane ( y < 0, which is load-free), these
stress functions are obtained to be identically zero. Note that the above results can also be obtained
from Eqs. (4.4.16a), (4.4.16b), (4.4.8a), (4.4.8b), (4.4.12a) and (4.4.12b) of Section 4.4. These results have
been reported in the literature (e.g., for the anisotropic case: Green and Zerna, 1954; Savin, 1961;
Lekhnitskii, 1956; Lekhnitskii, 1963; and for the isotropic case: Muskhelishvili, 1953; Timoshenko and
Goodier, 1970) using di�erent methods.

4. Method of continuously distributed dislocations (CDD)

In this section, a crack is modeled by a continuously distributed dislocations along its line. This
method is well established and many isotropic and some anisotropic crack problems are solved using
this method. Here, using this method, we present the solution of ®ve anisotropic crack problems with
balanced loads on their faces. While some of these results are new (e.g., Section 4.5), some are the
extension of the existing results for isotropic problems to the anisotropic case (e.g., Sections 4.2 and
4.3.1). The analysis in Section 4.4 demonstrates the contrast between the Hilbert and CDD methods,
showing how one method can produce the solution with greater ease than the other.

4.1. Green's functions for an open crack with an edge dislocation

Consider an in®nitely extended anisotropic body containing a straight crack with length 2a. The
far®eld stresses, s1xx, s1yy and s1xy, are such that the crack surfaces are not in contact (the conditions
under which the crack remains open are obtained at the end of this section). In addition to this, a single
edge dislocation b0 � �b0x, b0y�, is located at an arbitrary point z 0=(x 0, y 0) (CASE #1), or a pair of
centrally-symmetric edge-dislocations, �b0x, b0y� and �ÿb0x, ÿ b0y�, are located at (x 0, y 0) and (ÿx 0, ÿy 0)
(CASE #2); see Fig. 3. For the isotropic case, Lo (1978) formulated the Green function for this problem
and used it to model kinks emanating from the tips of an existing crack. Obata et al. (1989) applied
Lo's method to anisotropic media. Here, we present their formulation in detail and correct a minor
error; see Eq. (4.1.12a). The free-surface conditions are

syy�x, 0� � 0, sxy�x, 0� � 0, for ÿ aExEa �4:1:1�
where

syy�x, 0� � sc
yy�x, 0� � s1yy � sD

yy�x, 0; x0, y0� � sd
yy�x, 0; ÿ x0, ÿ y0� �4:1:2a�

and

A. Azhdari et al. / International Journal of Solids and Structures 37 (2000) 6433±6478 6449



sxy�x, 0� � sc
xy�x, 0� � s1xy � sD

xy�x, 0; x0, y0� � sd
xy�x, 0; ÿ x0, ÿ y0�: �4:1:2b�

In these expressions, the following notations are used:

1. The two terms with superscript `c' represent the stresses caused by the presence of the distributed
edge dislocations, b c, along the crack. Since, on the crack line, z1=z2=x and z01 � z02 � t, Eqs. (2.5b),
(2.5c), (2.10a) and (2.10b)) give

sc
yy�x, 0� � 2 Real

"
1

2piC11

�a
ÿa

1

xÿ t

�
s1b

c
x�t� ÿ bc

y�t�
~s1

� s2b
c
x�t� ÿ bc

y�t�
~s2

�
dt

#
�4:1:3a�

and

sc
xy�x, 0� � 2 Real

"
ÿ1

2piC11

�a
ÿa

1

xÿ t

(
s1
ÿ
s1b

c
x�t� ÿ bc

y�t�
�

~s1
� s2

ÿ
s2b

c
x�t� ÿ bc

y�t�
�

~s2

)
dt

#
: �4:1:3b�

2. The two terms with superscript `D' denote the stresses at point (x, 0) generated by the presence of a
single edge-dislocation b0 � �b0x, b0y� located at a generic point z 0=(x 0, y 0). From Eqs. (2.5b), (2.5c),
(2.10a) and (2.10b),

sD
yy�x, 0; x0, y0� � 2 Real

"
1

2piC11

(
s1b

0
x ÿ b0y
~s1

1

xÿ z01
� s2b

0
x ÿ b0y
~s2

1

xÿ z02

)#
�4:1:4a�

and

sD
xy�x, 0; x0, y0� � 2 Real

264 ÿ1
2piC11

8<:s1
�
s1b

0
x ÿ b0y

�
~s1

1

xÿ z01
�

s2
�
s2b

0
x ÿ b0y

�
~s2

1

xÿ z02

9=;
375: �4:1:4b�

3. The two terms with superscript `d' denote the stresses at point (x, 0) generated by the presence of a
single edge-dislocation ÿb0 � �ÿb0x, ÿ b0y� at point ÿz 0=(ÿx 0, ÿy 0),

Fig. 3. A body containing an open crack and two centrally-symmetric edge-dislocations at z 0 and ÿz 0 under far®eld stresses.
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sd
yy�x, 0;ÿ x0, ÿ y0� � ÿ2 Real

"
1

2piC11

(
s1b

0
x ÿ b0y
~s1

1

x� z01
� s2b

0
x ÿ b0y
~s2

1

x� z02

)#
�4:1:4c�

and

sd
xy�x, 0; ÿ x0, ÿ y0�

� ÿ2 Real

264 ÿ1
2piC11

8<:s1
�
s1b

0
x ÿ b0y

�
~s1

1

x� z01
�

s2
�
s2b

0
x ÿ b0y

�
~s2

1

x� z02

9=;
375: �4:1:4d�

Note that for CASE #2, terms with superscripts `D' and `d' must be retained in Eqs. (4.1.2a) and
(4.1.2b), whereas the last term with superscript `d' must be excluded for CASE #1.

Now, combine Eqs. (4.1.1), (4.1.2a), (4.1.2b), (4.1.3a), (4.1.3b), (4.1.4a±d) to arrive at the following
integral equations:

2 Real

"
1

2piC11

�a
ÿa

1

xÿ t

�
s1b

c
x�t� ÿ bc

y�t�
~s1

� s2b
c
x�t� ÿ bc

y�t�
~s2

�
dt

#

� s1yy � sD
yy�x, 0; x0, y0� � sd

yy�x, 0; ÿ x0, ÿ y0� � 0

�4:1:5a�

and

2 Real

"
ÿ1

2piC11

�a
ÿa

1

xÿ t

(
s1
ÿ
s1b

c
x�t� ÿ bc

y�t�
�

~s1
� s2

ÿ
s2b

c
x�t� ÿ bc

y�t�
�

~s2

)
dt

#

� s1xy � sD
xy�x, 0; x0, y0� � sd

xy�x, 0; ÿ x0, ÿ y0� � 0:

�4:1:5b�

Using Eqs. (B1a) and (B1b), the solution to Eqs. (4.1.5a) and (4.1.5b) is

2Real

�
1

C

�
s1b

c
x�t� ÿ bc

y�t�
~s1

� s2b
c
x�t� ÿ bc

y�t�
~s2

��
� s1yy

p
x�����������������

a2 ÿ x 2
p � 1

p2
�����������������
a2 ÿ x 2
p

2Real

"
1

C

�a
ÿa

���������������
a2 ÿ t2
p

xÿ t

(
s1b

0
x ÿ b0y
~s1

 
1

tÿ z01
ÿ 1

t� z01

!
� s2b

0
x ÿ b0y
~s2

 
1

tÿ z02
ÿ 1

t� z02

!)
dt

#
,

�4:1:6a�

and

2 Real

"
ÿ1
C

(
s1
ÿ
s1b

c
x�t� ÿ bc

y�t�
�

~s1
� s2

ÿ
s2b

c
x�t� ÿ bc

y�t�
�

~s2

)#
� s1xy

p
x�����������������

a2 ÿ x 2
p � 1

p2
�����������������
a2 ÿ x 2
p

and
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2Real

264ÿ1
C

�a
ÿa

���������������
a2 ÿ t2
p

xÿ t

8<:s1
�
s1b

0
x ÿ b0y

�
~s1

 
1

tÿ z01
ÿ 1

t� z01

!

�
s2
�
s2b

0
x ÿ b0y

�
~s2

 
1

tÿ z02
ÿ 1

t� z02

!9=;dt

375,
�4:1:6b�

where C=2piC11. Now, ®rst we use Eq. (B2e) for the de®nite integrals in Eqs (4.1.6a,b), and then solve
Eqs (4.1.6a,b) for the two unknowns bc

x and bc
y: The ®nal results are:

bc
x�x� � iC11

��s3s4 ÿ s1s2�s1yy � �s3 � s4 ÿ s1 ÿ s2�s1xy
	 x�����������������

a2 ÿ x 2
p � 1

2p
�����������������
a2 ÿ x 2
p

8<:
�
s1b

0
x ÿ b0y

�
s1 ÿ s2

X1 �
�
s2b

0
x ÿ b0y

�
s2 ÿ s1

X2 �
�
s3b

0
x ÿ b0y

�
s3 ÿ s4

X3 �
�
s4b

0
x ÿ b0y

�
s4 ÿ s3

X4

9=;
�4:1:7a�

and

bc
y�x� � iC11

n�
s1s3�s4 ÿ s2� � s2s4�s3 ÿ s1�

�
s1yy � �s3s4 ÿ s1s2�s1xy

o x�����������������
a2 ÿ x 2
p � 1

2p
�����������������
a2 ÿ x 2
p

8<:s2
�
s1b

0
x ÿ b0y

�
s1 ÿ s2

X1 �
s1
�
s2b

0
x ÿ b0y

�
s2 ÿ s1

X2 �
s4
�
s3b

0
x ÿ b0y

�
s3 ÿ s4

X3 �
s3
�
s4b

0
x ÿ b0y

�
s4 ÿ s3

X4

9=;,
�4:1:7b�

where Xj for CASE #1 and CASE #2 is given by

Xj � 1�
�����������������
z0

2

j ÿ a2

q
xÿ z0j

�4:1:7c�

and

Xj �
�����������������
z0

2

j ÿ a2
q
xÿ z0j

�
�����������������
z0

2

j ÿ a2
q
x� z0j

, � j � 1, 2, 3, 4�, �4:1:7d�

respectively. If dislocations of densities bc
x�x� and bc

y�x�, given by Eqs. (4.1.7a) and (4.1.7b), are
distributed along the crack line, then the crack surfaces will remain open (and thus, stress free); see the
required restrictions on the applied loads given by Eq. (4.1.15). Note that the ®rst terms in Eqs. (4.1.7a)
and (4.1.7b) are due to the far®eld loading and the second terms are due to the presence of the single
edge dislocation.

Now, ®nd the potential functions (equivalently, ®nd the stresses) due to the presence of bc
x�x� and

bc
y�x� along the crack line. Substitution of bc

x�x� and bc
y�x� into Eqs. (2.10a,b), for b0x and b0y gives the

potential functions,

FM�z1� � 1

2piC11

1

~s1

�a
ÿa

s1b
c
x�t� ÿ bc

y�t�
z1 ÿ t

dt �4:1:8a�
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and

CM�z2� � 1

2piC11

1

~s2

�a
ÿa

s2b
c
x�t� ÿ bc

y�t�
z2 ÿ t

dt: �4:1:8b�

After substituting for bc
x�t� and bc

y�x� from Eqs. (4.1.7a,b) into Eqs. (4.1.8a) and (4.1.8b), de®nite
integrals similar to Eqs. (B2a), (B2b) and (B2c) are encountered. Using these formulae and performing
some rather cumbersome algebra, the following expressions for the potential functions FM and CM are
obtained:

FM

ÿ
z1; z

0
�
� F1�z1� � FM

ÿ
z1; z

0
�

CM

ÿ
z2; z

0
�
� C1�z2� �CM

ÿ
z2; z

0
�
, �4:1:9�

where

F1�z1� �
s2s1yy � s1xy
2�s1 ÿ s2�

(
1ÿ z1����������������

z21 ÿ a2

q )
, C1�z2� �

s1s1yy � s1xy
2�s2 ÿ s1�

(
1ÿ z2����������������

z22 ÿ a2

q )
, �4:1:10�

FM
ÿ
z1; z

0
�
� 1

4piC11

1

s1 ÿ s2

�
(

s1b
0
x ÿ b0y

�s1 ÿ s3��s1 ÿ s4�Y11 �
s3b

0
x ÿ b0y

�s1 ÿ s3��s3 ÿ s4�Y13 �
s4b

0
x ÿ b0y

�s1 ÿ s4��s4 ÿ s3�Y14

) �4:1:11a�

and

CM
ÿ
z2; z

0
�
� 1

4piC11

1

s2 ÿ s1

�
(

s2b
0
x ÿ b0y

�s2 ÿ s3��s2 ÿ s4�Y21 �
s3b

0
x ÿ b0y

�s2 ÿ s3��s3 ÿ s4�Y23 �
s4b

0
x ÿ b0y

�s2 ÿ s4��s4 ÿ s3�Y24

)
,

�4:1:11b�

where

Yij � 1����������������
z2i ÿ a2

p � 1

zi ÿ z0j

8<:
�����������������
z0

2

j ÿ a2

q
����������������
z2i ÿ a2

p ÿ 1

9=;, i � 1, 2 and j � 1, 2, 3, 4, � for CASE #1�, �4:1:12a�

and

Yij � 1

zi ÿ z0j

8<:
�����������������
z0

2

j ÿ a2
q
����������������
z2i ÿ a2

p ÿ 1

9=;� 1

zi � z0j

8<:
�����������������
z0

2

j ÿ a2
q
����������������
z2i ÿ a2

p � 1

9=; � for CASE #2�: �4:1:12b�

Note that, in contrast to Eqs. (2.10a) and (2.10b), functions Yij are not singular at zi � z0j : This can be
clari®ed by noting that

A. Azhdari et al. / International Journal of Solids and Structures 37 (2000) 6433±6478 6453



1

zi ÿ z0j

8<:
�����������������
z0

2

j ÿ a2
q
����������������
z2i ÿ a2

p ÿ 1

9=; � ÿ
�
zi � z0j

�
����������������
z2i ÿ a2

p � ����������������
z2i ÿ a2

p
�

�����������������
z0

2

j ÿ a2

q � : �4:1:13�

The potential functions in Eqs. (4.1.10) are associated with the applied uniform loads; these are
identical to the ones given by Savin (1961) who derived them by the method of collapsing an ellipsoidal
hole to a crack. Moreover, the potential functions in Eqs. (4.1.11a) and (4.1.11b) correspond to the
e�ects of a single edge dislocation. These potentials are the corresponding Green's functions.

The above results (Green's functions) can be used to solve various crack problems, such as:

1. a kink emanating from the tip of a pre-existing crack;
2. two centrally symmetric kinks emanating from the tips of a pre-existing crack;
3. two cracks with any size and any relative orientation with respect to each other (one of which can be

considered as the pre-existing crack); and
4. three cracks with the second and third one having any size and orientation, but being centrally

symmetric with respect to the ®rst one (the pre-existing crack).

The main advantage of the above Green functions are that, for any of these four problems, just one line
of discontinuity (kink or the crack) has to be modeled by the continuous distribution of the edge
dislocations along the line, because the presence of the pre-existing crack is already built into the Green
function.

The ®rst problem of the previous paragraph is considered by Obata et al. (1989) and Azhdari and
Nemat-Nasser (1996b). They used an equation similar to Eq. (4.1.12a), but omitting the ®rst term. All
their calculations are for the case of a vanishingly small kink emanated from the tip of a pre-existing
crack. For this particular application, the e�ect of the ®rst term vanishes as the kink length approaches
zero. Therefore, no error is introduced by omitting the ®rst term in Eq. (4.1.12a) in this particular case.
It is interesting to note that, when two centrally-symmetric kinks (or, equivalently, two centrally-
symmetric edge dislocations) are considered, then the ®rst term in Eq. (4.1.12a) makes no contribution
to the ®nal result (see Eq. (4.1.12b)).

Let us, now, calculate the crack-opening displacement (COD) along the crack line. For this, we only
use the ®rst terms of Eqs. (4.1.7a) and (4.1.7b) in Eqs. (C4a) and (C4b), respectively, to arrive at

Ux�x� � 2C11

��a1b2 � a2b1�s1yy � �b1 � b2�s1xy
� �����������������

a2 ÿ x 2
p

�4:1:14a�

and

Uy�x� � 2C11

h�
b1
�
a2
2 � b2

2

�
� b2

�
a2
1 � b2

1

��
s1yy � �a1b2 � a2b1�s1xy

i �����������������
a2 ÿ x 2
p

: �4:1:14b�

For an open crack, the y-component of the COD Eq. (4.1.14b) must be non-negative to ensure no
material inter-penetration. Thus, for all the formulations of this section, it must be required thath�

b1
�
a2
2 � b2

2

�
� b2

�
a2
1 � b2

1

��
s1yy � �a1b2 � a2b1�s1xy

i
> 0: �4:1:15�

This completes the formulation of the problem of an open crack under far®eld loads, and in the
presence of a single or a pair of centrally-symmetric edge dislocations. Application of this formulation is
demonstrated by Obata et al. (1989) and Azhdari and Nemat-Nasser (1996a, 1996b).

As a ®nal comment for this section, we calculate the stress intensity factors (SIFs) at the crack tip, for
the case when the open crack is subjected to only the far®eld loads. Substitution of Eqs. (4.1.10) in Eqs.
(2.5b) and (2.5c) gives the stresses, and the SIFs become (see Appendix D.1)
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KI � s1yy
������
pa
p

and KII � s1xy
������
pa
p

: �4:1:16�

Therefore, as stated by Sih et al. (1965) and Barnett and Asaro (1972), for an open crack in a medium
with any degree of anisotropy, the SIFs are not dependent upon the material properties and they are
identical to the SIFs of the isotropic case; compare this comment with the one given in Section 4.2.

4.2. Green's functions for a closed frictional crack with an edge dislocation

Consider a straight crack with length 2a in an in®nitely extended anisotropic body. The far®eld axial
and lateral loads �s111 and s122� are such that the crack surfaces are in contact; see Fig. 4. Therefore, the
y-component of COD is zero (see Eq. (4.1.15)). The crack faces may slide against each other. In such a
case, we assume a Coulomb-type frictional and cohesive contact with friction coe�cient m and cohesive
stress tc, resisting the sliding. In addition, the body contains either a single edge dislocation (CASE #1)
or a pair of centrally-symmetric edge dislocations (CASE #2); see Fig. 4. The formulation of this
problem is somewhat similar to Section 4.1, and thus, we present just the key results; for the isotropic
case, see the formulation by Horii and Nemat-Nasser (1985).

In order to create the frictional conditions on the crack surfaces, the following distribution of
dislocations should exist along the crack line as in Eqs. (4.1.7a,b):

bc
x�x� �

seq:
xy

pQ
x�����������������

a2 ÿ x 2
p ÿ 1

2p2iC11Q

1�����������������
a2 ÿ x 2
p �W1 �W2 ÿW3 ÿW4�, �4:2:1�

Wj � �sj � m�sjb
0
x ÿ b0y
~sj

0@
1�

�����������������
z0

2

j ÿ a2

q
xÿ z0j

1A
, j � 1, 2, 3, 4 � for CASE #1� �4:2:2a�

and

Wj � �sj � m�sjb
0
x ÿ b0y
~sj

0@ �����������������
z0

2

j ÿ a2
q
xÿ z0j

�
�����������������
z0

2

j ÿ a2
q
x� z0j

1A
, j � 1, 2, 3, 4 � for CASE #2� �4:2:2b�

Fig. 4. A body containing a frictional crack and two centrally-symmetric edge-dislocations at z 0 and ÿz 0 subjected to far®eld axial

compressive and lateral tensile or compressive loads.
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where

Q � 2 Real

"
ÿ1

2piC11

(�
s21
~s1
� s22

~s2

�
� m

�
s1
~s1
� s2

~s2

�)#
� ÿ1

pC11

�
D3 � mD2

D0

�
�4:2:3a�

and

seq:
xy � s1xy � tc ÿ ms1yy, �4:2:3b�

where parameters Dj are de®ned in Appendix A; the term seq:
xy is the equivalent shear stress on the crack

line, s1yy � s122 cos 2g� s111 sin2g and s1xy � �s111 ÿ s122�sin g cos g are the far®eld stresses resolved on the
crack line. For the isotropic case, Q = 1/(4pC11). Note that the ®rst term in Eq. (4.2.1) is associated
with the applied far®eld loads, and the second term represents the e�ects of the edge dislocation.

The potential functions due to bc
x�x� are as follows:

FM

ÿ
z1; z

0
�
� F1�z1� � FM

ÿ
z1; z

0
�

�4:2:4a�

and

CM

ÿ
z2; z

0
�
� C1�z2� �CM

ÿ
z2; z

0
�
, �4:2:4b�

where

F1�z1� �
ÿseq:

xy

2piC11Q

s1
~s1

 
1ÿ z1����������������

z21 ÿ a2

q !
, �4:2:4c�

C1�z2� �
ÿseq:

xy

2piC11Q

s2
~s2

 
1ÿ z2����������������

z22 ÿ a2

q !
, �4:2:4d�

FM
ÿ
z1; z

0
�
� 1

�2pC11�2Q
s1
~s1
�V11 � V12 ÿ V13 ÿ V14� �4:2:4e�

and

CM
ÿ
z2; z

0
�
� 1

�2pC11�2Q
s2
~s2
�V21 � V22 ÿ V23 ÿ V24�: �4:2:4f�

The functions Vij are

Vij � �sj � m�sjb
0
x ÿ b0y
~sj

264 1����������������
z2i ÿ a2

p � 1

zi ÿ z0j

8<:
�����������������
z0

2

j ÿ a2

q
����������������
z2i ÿ a2

p ÿ 1

9=;
375 �4:2:5a�

and
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Vij � �sj � m�sjb
0
x ÿ b0y
~sj

264 1

zi ÿ z0j

8<:
�����������������
z0

2

j ÿ a2

q
����������������
z2i ÿ a2

p ÿ 1

9=;� 1

zi � z0j

8<:
�����������������
z0

2

j ÿ a2

q
����������������
z2i ÿ a2

p � 1

9=;
375 �4:2:5b�

for CASE #1 and CASE #2, respectively. Note that the potential functions in Eqs. (4.2.4c) and (4.2.4d)
are associated with the applied far®eld loads, and those in Eqs. (4.2.4e) and (4.2.4f) correspond to the
edge dislocations. These Green's functions facilitate solving problems such as a closed frictional crack
with kinks (wings) emanating from its tips.

Let us, now, ®nd the stress intensity factors at the crack tip for the case when no single or double
edge dislocations are present; see Eqs. (4.2.4a) and (4.2.4b). Substitution of Eqs. (4.2.4c) and (4.2.4d) in
Eqs. (2.5b) and (2.5c) gives the stresses and, consequently (from Appendix D1), the SIFs,

KI � ÿ
������
pa
p ÿ

s1xy � tc ÿ ms1yy
�� D2

D3 � mD2

�
�4:2:6a�

and

KII �
������
pa
p ÿ

s1xy � tc ÿ ms1yy
�� D3

D3 � mD2

�
: �4:2:6b�

As is evident from Eqs. (4.2.6a) and (4.2.6b), SIFs are, in general, functions of the material properties;
see Appendix A. However, when the material is orthotropic and the body- and material-coordinate
systems coincide (crack lies on one of the material axis), then D2=0, and Eqs. (4.2.6a) and (4.2.6b)
reduces to

KI � 0 and KII �
������
pa
p ÿ

s1xy � tc ÿ ms1yy
�
: �4:2:7�

Therefore, for this special case, the SIFs are not dependent upon the material properties and they are
identical to the SIFs of the isotropic case; for comparison, see SIFs of Section 4.1. Nevertheless, the
SIFs are strongly a�ected by the conditions of the crack surfaces which are characterized by m and tc. It
is interesting that, according to Eq. (4.2.7), a crack on one material axis does not extend collinearly, but
kinks; it can be shown that the kinking occurs at an angle of about 70 degrees with respect to the pre-
existing crack. Finally, note that the formulation given in this section is simpler, better structured and
more systematic than the ones for isotropic media given by, e.g., Horii and Nemat-Nasser (1985).

4.3. Dislocated crack

Consider plane deformations of a cracked anisotropic body. Under compressive far®eld loads, a
Mode-II crack may initiate Mode-I cracks (wing cracks) from the tips of a pre-existing crack. For the
case of isotropic material, Nemat-Nasser and Obata (1988) used a dislocated crack to model a wing
crack initiating from the tips of an existing sliding crack. In Section 4.3.1, for an open crack, we extend
their formulation to the anisotropic case, and then the case of a partially-closed dislocated crack is
formulated in Section 4.3.2.

4.3.1. A fully open crack dislocated at its right tip
Assume that the right tip of the crack is dislocated by dx and dy, as shown in Fig. 5. The boundary

conditions, for an open dislocated crack, are

syy � 0, sxy � 0, for ÿ aRxR� a � free crack surfaces�, �4:3:1a�
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Ux�a� � dx, Uy�a� � dy, �4:3:1b�

Ux � 0, Uy � 0 for x=2�ÿa, � a� �4:3:1c�
In order to ®nd the stress functions and the crack opening displacement (COD) for this problem, the

method of distributed edge dislocations is applied. The conditions for the stress-free crack surfaces lead
to the following integral equations:�a

ÿa

1

xÿ t
fD2bx�t� ÿ D1by�t�gdt � 0,

�a
ÿa

1

xÿ t
fÿD3bx�t� ÿ D2by�t�gdt � 0: �4:3:2�

With the aid of Eqs. (B1a), (B1b) and formulae given in Appendix A, the solution of this system of
integral equations is

bx�x� � ÿdxp
1�����������������

a2 ÿ x 2
p , by�x� � ÿdyp

1�����������������
a2 ÿ x 2
p : �4:3:3�

Consequently, from Eqs. (C4a,b), (2.10a), (2.10b), the COD and the stress functions are obtained as

Ux�x� � dx
p

�
sinÿ1

x

a
� p

2

�
, Uy�x� � dy

p

�
sinÿ1

x

a
� p

2

�
, �4:3:4a�

F�z1� � ÿ1
2piC11

1

~s1

s1dx ÿ dy����������������
z21 ÿ a2

q , C�z2� � ÿ1
2piC11

1

~s2

s2dx ÿ dy����������������
z22 ÿ a2

q : �4:3:4b�

Note that the dislocation density functions and the COD are not function of the material properties.
Finally, the stress intensity factors at the right crack tip are given by

KI � ÿ1
C11

������
pa
p

�
D2dx � D1dy

D0

�
, KII � 1

C11

������
pa
p

�
D3dx ÿ D2dy

D0

�
: �4:3:5�

4.3.2. A partially closed crack dislocated at its right tip under far®eld loads
Consider the problem of Section 4.3.1. In addition to the right-tip dislocations dx and dy, the body is

subjected to the uniform far®eld loads s1yy and s1xy: Assume that the combination of the far®eld loads
and the right-tip dislocation renders the crack partly closed on its left side, from x=ÿa to some point

Fig. 5. An open crack dislocated at its right tip by d=dx+idy.
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x=b which must be computed; see Fig. 6. These conditions require,

syy � sc
yy � 0, sxy � sc

xy � 0, for bRxR� a, �4:3:6a�

Ux�a� � dx, Uy�a� � dy, �4:3:6b�

syy � sc
yy � s0yy � s1yy � 0, sxy � sc

xy � s1yy � 0, Uy � 0 for ÿ aRxRb, �4:3:6c�

Ux � 0 and Uy � 0 for x=2�ÿa, � a�, �4:3:6d�

where sc
yy and sc

xy are the stresses due to the presence of the distributed dislocations along the crack,
and s0yy is the normal stress transmitted across the crack surfaces over the contact region. The stress s0yy
and the length of the contact surfaces (the location of point b ) are unknown and must be determined as
part of the solution.

The stress boundary conditions (Eqs. (4.3.6c)) lead to the following integral equations:

1

pC11D0

�a
ÿa

1

xÿ t
fD2bx�t� ÿ D1by�t�H�tÿ b�gdt� s1yy � s0yyH�bÿ x� � 0 �4:3:7a�

and

1

pC11D0

�a
ÿa

1

xÿ t
fÿD3bx�t� � D2by�t�H�tÿ b�gdt� s1xy � 0, �4:3:7b�

where H(s ) is unity or zero for positive or negative s, respectively. In order to obtain the length of the
contact zone (point b ) and the contact stress s0yy�x�, we note the conditions given in Eqs. (4.3.6b,c) and
(4.3.6d). The normal contact stress s0yy�x� is bounded at x=b and x=ÿa, and bx(x ) is bounded at x=b
but is singular at x=ÿa. The ®nal results are

b � aÿ 2

pC11

dy

D3s1yy � D2s1xy
, s0yy�x� �

D3s1yy � D2s1xy
D3

�����������
bÿ x
p�����������
aÿ x
p : �4:3:8�

Fig. 6. A crack is ®rst dislocated at its right tip by d=dx+idy, and then subjected to far®eld loads which cause partial crack closure

(from x=ÿa to x=b ).
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For the contact point to lie on the crack line and the normal contact stress be negative (compressive),
the following condition must be satis®ed:ÿ

D3s1yy � D2s1xy
�
> 0,

�
b1
�
a2
2 � b2

2

�
� b2

�
a2
1 � b2

1

��
s1yy �

ÿ
a1b2 � a2b1

�
s1xy < 0: �4:3:9�

Compare this condition with the one given in Eq. (4.1.15).
Now, use Eq. (4.3.8) in Eqs. (4.3.7a) and (4.3.7b) and then solve the integral equations (Eqs. (4.3.7a)

and (4.3.7b)) for the dislocation densities, bx(x ) and by(x ), to arrive at

bx�x� � C11
D0

D3
ÿ 1�����������������

a2 ÿ x 2
p

�
s1xyx�

1

pC11D0
�D3dx ÿ D2dy�

�
ÿ C11

D2

D3

ÿ
D3s1yy

� D2s1xy
� �����������

xÿ b
p�����������
aÿ x
p H�xÿ b� �4:3:10a�

and

by�x� � ÿC11

ÿ
D3s1yy � D2s1xy

� �����������
xÿ b
p�����������
aÿ x
p H�xÿ b�: �4:3:10b�

The COD components are

Ux�x� � ÿC11
D4

D3
s1xy

�����������������
a2 ÿ x 2
p

� 1

p

�
dx ÿ D2

D3
dy

��
sinÿ1

x

a
� p

2

�

ÿ C11
D2

D3

ÿ
D3s1yy � D2s1xy

� �����������������������������
�aÿ x��xÿ b�

p
H�xÿ b�

� D2

D3

dy

p

�
sinÿ1

�
xÿ bÿ �aÿ x�

aÿ b

�
� p

2

�
H�xÿ b�

�4:3:11a�

Uy�x� � ÿC11

ÿ
D3s1yy � D2s1xy

� �����������������������������
�aÿ x��xÿ b�

p
H�xÿ b�

� dy

p

�
sinÿ1

�
xÿ bÿ �aÿ x�

aÿ b

�
� p

2

�
H�xÿ b�:

�4:3:11b�

4.4. A crack and self-equilibrating tractions

Consider plane deformations of an anisotropic body containing a crack. A segment of the upper and
lower crack faces (b R x R c ) are loaded by self-equilibrating (i.e., equal in magnitude but opposite in
sign) normal and shear tractions such that the crack faces are not in contact; see Fig. 7. We investigate
this problem for the cases of:

1. loading on a part of the crack faces,
2. loading on the entire crack faces, and
3. loading just at an arbitrary point on the crack faces by concentrated forces.

On the crack faces, the boundary conditions are
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sc
yy � s0yy � 0, sc

xy � s0xy � 0: �4:4:1�

Terms with superscript `c' represent the stresses corresponding to the distributed edge dislocations,
b(x )=bx(x )+iby(x ), along the crack line, and s0yy and s0xy are the self-equilibrating tractions externally
applied on the crack faces. As in Section 4.1, these BCs result in a set of singular integral equations for
bx(x ) and by(x ). Using the Dj's of Appendix A and of Eqs. (B1a) and (B1b), the solution of the system
of integral equations is

1

pD0C11
fD2bx�x� ÿ D1by�x�g � 1

p2
�����������������
a2 ÿ x 2
p

��a
ÿa

���������������
a2 ÿ t2
p

xÿ t
s0yy�t�dt �4:4:2a�

and

1

pD0C11
fÿD3bx�x� � D2by�x�g � 1

p2
�����������������
a2 ÿ x 2
p

��a
ÿa

���������������
a2 ÿ t 2
p

xÿ t
s0xy�t�dt: �4:4:2b�

For the case of constant tractions, i.e.,

s0yy � p and s0xy � q for bRxRc �and elsewhere, zero�, �4:4:3�

the integral in Eq. (4.4.2a) becomes��a
ÿa

���������������
a2 ÿ t2
p

xÿ t
s0yy dt � p

�c
b

���������������
a2 ÿ t2
p

xÿ t
dt � pI�a, b, c, x�, �4:4:4�

with

I �
����������������
a2 ÿ b2
p

ÿ
����������������
a2 ÿ c2
p

� x

�
sinÿ1

c

a
ÿ sinÿ1

b

a

�
� log

"
�a2 �

����������������
a2 ÿ c2
p �����������������

a2 ÿ x 2
p

ÿ cx��xÿ b�
�a2 �

����������������
a2 ÿ b2
p �����������������

a2 ÿ x 2
p

ÿ bx��xÿ c�

#
:

Now, the dislocation density functions, from Eqs. (4.4.2a) and (4.4.2b), are

bx�x� � C11

p
fÿD2p� D1qgI�a, b, c, x������������������

a2 ÿ x 2
p , by�x� � C11

p
fÿD3pÿ D2qgI�a, b, c, x������������������

a2 ÿ x 2
p : �4:4:5�

Next, we calculate the associated potential functions using Eqs. (2.10a), (2.10b), (4.4.4), (4.4.5),

F�z1� � ÿ1
2p2

s2p� q

s1 ÿ s2

�a
ÿa

I�a, b, c, t�
�z1 ÿ t�

���������������
a2 ÿ t2
p dt �4:4:6a�

Fig. 7. A balanced loading of the crack faces; normal and tangential tractions, p and q, act on the segment bR xR c.
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and

C�z2� � 1

2p2

s1p� q

s1 ÿ s2

�a
ÿa

I�a, b, c, t�
�z2 ÿ t�

���������������
a2 ÿ t2
p dt, �4:4:6b�

where the de®nite integral is expressed as�a
ÿa

I�a, b, c, t�
�zÿ t�

���������������
a2 ÿ t2
p dt � p

����������������
a2 ÿ b2
p

ÿ
����������������
a2 ÿ c2
p����������������

z2 ÿ a2
p ÿ p

�
sinÿ1

c

a
ÿ sinÿ1

b

a

��
1ÿ z����������������

z2 ÿ a2
p

�

�
�a
ÿa

log

"
�a2 �

����������������
a2 ÿ c2
p ���������������

a2 ÿ t2
p

ÿ ct�jtÿ bj
�a2 �

����������������
a2 ÿ b2
p ���������������

a2 ÿ t2
p

ÿ bt�jtÿ cj

#
zÿ t

dt: �4:4:7�

The last part of this integral seems to be di�cult to be carried out. Thus, for this particular loading
case, we evaluate the potential functions by the method of Section 3, the Hilbert problem. This is given
at the end of this section.

Consider the solution when the entire crack faces are loaded uniformly by p and q. For this, set
b=ÿa and c=+a to obtain I(a, b, c, x )=px. Thus, the dislocation functions and the potentials, using
Eq. (B2c), become

bx�x� � C11fÿD2p� D1qg x�����������������
a2 ÿ x 2
p , by�x� � C11fÿD3pÿ D2qg x�����������������

a2 ÿ x 2
p , �4:4:8�

F�z1� � ps2 � q

2�s1 ÿ s2�
(
1ÿ z1����������������

z21 ÿ a2

q )
, C�z2� � ps1 � q

2�s2 ÿ s1�
(
1ÿ z2����������������

z22 ÿ a2

q )
: �4:4:8b�

Note that these functions are similar to Eqs. (4.1.7a), (4.1.7b), (4.1.10) of Section 4.1.
Finally, consider the case of a point force (concentrated normal and shear forces) applied at the

arbitrary point x=z on the crack face. Considering b=zÿe and c=z+e, with e<<1, one can represent
the concentrated forces as

Fx � �2eq�e40, Fy � �2ep�e40 �Fx and Fy are applied at x � z�: �4:4:9�

This now leads to

I�a, b, c, x� � I�a, z, e, x� � 2e

����������������
a2 ÿ z2

p
xÿ z

�O�e2�: �4:4:10�

Now, use Eq. (4.4.10) in Eqs. (4.4.5), (4.4.6a) and (4.4.6b), as well as Eq. (B2f), to arrive at

bx�x� � C11

p
fÿD2Fy � D1Fxg

����������������
a2 ÿ z2

p
�xÿ z�

�����������������
a2 ÿ x 2
p , �4:4:11a�

by�x� � C11

p
fÿD3Fy ÿ D2Fxg

����������������
a2 ÿ z2

p
�xÿ z�

�����������������
a2 ÿ x 2
p , �4:4:11b�
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F�z1� � ÿ1
2p

s2Fy � Fx

s1 ÿ s2

8<:
����������������
a2 ÿ z2

p
�z1 ÿ z�

����������������
z21 ÿ a2

q 9=;, �for z1=2�ÿa, a�� �4:4:12a�

and

C�z2� � 1

2p
s1Fy � Fx

s1 ÿ s2

8<:
����������������
a2 ÿ z2

p
�z2 ÿ z�

����������������
z22 ÿ a2

q 9=; �for z2=2�ÿa, a��: �4:4:12b�

Note that for this case, there is an additional singularity at point x=z where the point force is applied;
this singularity is stronger than the square-root singularities occurring at the crack tips, x=ÿa and
x=a.

Having calculated the potential functions, the stresses are readily computed using Eqs. (2.5b) and
(2.5c). Then, the SIFs, KI and KII, at the right tip of the crack are

KI � Fy������
pa
p

������������
a� z
aÿ z

s
and KII � Fx������

pa
p

������������
a� z
aÿ z

s
: �4:4:13�

These are also the Green functions for calculating the SIFs for an open crack subjected to self-
equilibrating tractions, s0yy�x� and s0xy�x� (bR xR c ),

KI � 1������
pa
p

�c
b

������������
a� z
aÿ z

s
s0yy�z�dz and KII � 1������

pa
p

�c
b

������������
a� z
aÿ z

s
s0xy�z�dz: �4:4:14�

Note that the SIFs given in Eq. (4.4.13) are not functions of the material properties, thus, they are
identical to the ones for the isotropic case. This is because the applied concentrated forces are balanced
on the crack faces (Barnett and Asaro, 1972). See Section 3.3 for the case when the concentrated forces
are applied on just one crack face (the corresponding SIFs then do depend on the material properties).

Referring to Eqs. (4.4.6a), (4.4.6b) and (4.4.7), consider the calculation of the stress functions using
the Hilbert method of Section 3.1. For the self-equilibrating tractions on the crack faces, Eqs. (3.1.3a)
and (3.1.3b) reduce to

�1� as1�Y�z� � �1� as3�O�z� � ÿpÿ aq
pi

1����������������
z2 ÿ a2
p

(�c
b

���������������
t2 ÿ a2
p

tÿ z
dt� R�z�

)
�4:4:15a�

and

�1� as1�Y�z� ÿ �1� as3�O�z� � 0: �4:4:15b�

Here, the single-valuedness of the displacement ®eld requires that R(z )=C0=0. Using this and a
procedure similar to Section 3, we obtain

Y�z� � ÿpÿ aq
2p

1

1� as1
H�a, b, c, z�, O�z� � ÿpÿ aq

2p
1

1� as3
H�a, b, c, z�, �4:4:16a�

F�z� � 1

2p
ps2 � q

s1 ÿ s2
H�a, b, c, z�, C�z� � 1

2p
ps1 � q

s2 ÿ s1
H�a, b, c, z�, �4:4:16b�
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KI � ÿp������pa
p Mÿ�a, b, c�, KII � ÿq������pa

p Mÿ�a, b, c� at x � a, �4:4:17a�

KI � p������
pa
p M��a, b, c� and KII � q������

pa
p M��a, b, c� at x � ÿa, �4:4:17b�

where the functions H and M are de®ned in Section 3.1; see Eqs. (3.1.5c) and (3.1.14c).
Comparing Eq. (4.4.16b) with Eqs. (4.4.6a) and (4.4.6b) along with Eq. (4.4.7), we obtain an

expression for the de®nite integral in Eq. (4.4.7),

�a
ÿa

log

"
�a2 �

����������������
a2 ÿ c2
p ���������������

a2 ÿ t2
p

ÿ ct�jtÿ bj
�a2 �

����������������
a2 ÿ b2
p ���������������

a2 ÿ t 2
p

ÿ bt�jtÿ cj

#
zÿ t

dt

� ÿp
"

tanÿ1
czÿ a2����������������

a2 ÿ c2
p ����������������

z2 ÿ a2
p ÿ tanÿ1

bzÿ a2����������������
a2 ÿ b2
p ����������������

z2 ÿ a2
p ÿ sinÿ1

c

a
� sinÿ1

b

a

#
: �4:4:18�

4.5. Non-aligned periodic open cracks under far®eld loads

Consider an in®nite set of straight cracks with a common length 2a in an in®nitely extended
anisotropic plate. The cracks are parallel and spaced by h and d in the x-direction and y-direction,
respectively, as shown in Fig. 8. The far®eld load �s1yy and s1xy� is such that the cracks remain open.
Some exact and approximation formulae are available for the isotropic case and special geometries, e.g.,
collinear cracks with d= 0 and h> 2a, and parallel cracks with h= 0 and d$0; see Murakami (1987).
Here, we consider a more general case for which the material is anisotropic, and d and h are, in general,
non-zero, summarizing the key results in what follows.

The stress-free crack-face conditions for a typical crack (zero-th crack of Fig. 8) are

sc
yy�x, 0� � s1yy � 0 and sc

xy�x, 0� � s1xy � 0, �4:5:1�

where the ®rst terms in Eq. (4.5.1) are the stresses on the line of the zero-th crack corresponding to all
the cracks. Each crack is modeled by edge dislocations bx and by distributed along its line; because of
periodicity the dislocation functions bx and by are the same for all cracks. The ®nal form of Eq. (4.5.1)
is

2 Real

�
A1

�a
ÿa
�s1bx�t� ÿ by�t��cotan�B1�xÿ t��dt

�

� 2 Real

�
A2

�a
ÿa
�s2bx�t� ÿ by�t��cotan�B2�xÿ t��dt

�
� s1yy � 0

�4:5:2a�

and

ÿ2 Real

�
A1s1

�a
ÿa
�s1bx�t� ÿ by�t��cotan�B1�xÿ t��dt

�

ÿ 2 Real

�
A2s2

�a
ÿa
�s2bx�t� ÿ by�t��cotan�B2�xÿ t��dt

�
� s1xy � 0,

�4:5:2b�
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where

Aj � 1

2piC11

ÿp
~sjPj

, Bj � ÿp
Pj

, Pj � h� sjd, for j � 1, 2: �4:5:2c�

These are two integral equations for the two unknowns, bx(x ) and by(x ), ÿa R x R a. A closed form
solution for bx(x ) and by(x ) is di�cult to obtain. When the material is isotropic and the cracks are
collinear, the following formula (Westergaard, 1939) gives the SIF:

KI �
��������������������������
h

pa
tan

�
pa
h

�s
s1yy

������
pa
p

for h > 2a and d � 0: �4:5:3�

Again, for the isotropic case and when the cracks are parallel (with h = 0 and d$ 0), Yokobori and
Ichikawa (1967) propose an approximation formula for SIF. The more general case shown in Fig. 8
seems not to have been considered, even for the isotropic case. Next, consider solving this problem.

The system of coupled singular integral equations in Eqs. (4.5.2a,b) can be solved numerically, as
outlined in Appendix C. The auxiliary conditions for this problem are of the type in Eqs. (C3a) and
(C3b); these two conditions ensure that each crack is closed at both ends. The numerical solution gives
Bx(x ) and By(x ) along the crack line and, in particular, Bx(x=a ) and By(x=a ). Only the last two
parameters are required for the calculation of the SIFs at the crack tip; see Appendix D. The SIFs are

KI �
����
p
a

r �
D2Bx�a� � D1By�a�

D0C11

�
, KII �

����
p
a

r �ÿD3Bx�a� � D2By�a�
D0C11

�
, �4:5:4�

where the Dj's are de®ned in Appendix A. For the isotropic case, these formulae reduce to KI �
By�a�

��������
p=a
p

=�4C11� and KII � Bx�a�
��������
p=a
p

=�4C11�: The numerical procedure outlined in Appendix C gives
the values of Bx(x ) and By(x ) to any desired degree of accuracy, i.e. by a ®ner partitioning the interval
[ÿa, +a ]. The numerical results may be used to estimate the error involved in the following

Fig. 8. A body with an in®nite row of equally-spaced, open, parallel cracks, under far®eld stresses.
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approximation calculation of Bx(x=a ) and By(x=a ):

Bx�a�1
ÿs1yyA22 � s1xyA12

A11A22 ÿ A12A21
and By�a�1

ÿs1xyA11 � s1yyA21

A11A22 ÿ A12A21
, �4:5:5a�

with

A11 � 2 Real

�
p

2piC11

�
s1
~s1
Q1 � s2

~s2
Q2

��
, A12 � 2 Real

� ÿp
2piC11

�
1

~s1
Q1 � 1

~s2
Q2

��
, �4:5:5b�

A21 � 2 Real

� ÿp
2piC11

�
s21
~s1
Q1 � s22

~s2
Q2

��
, A22 � A11 �4:5:5c�

and

Qj � Bj

p

�a
ÿa

cotan�Bj�aÿ t��
���������������
a2 ÿ t2
p

dt �
XN��1

N�ÿ1

�
Wj ÿ

�������������������
W 2

j ÿ a2

q �
, Wj � aÿNpj: �4:5:5d�

In order to examine the range of validity of the above approximate formula, the SIFs are calculated
for di�erent elastic constants (E11, E22, G12, n12 and b ), the horizontal and vertical distances between the
crack centers (h and d ), and the far®eld loads �s1yy and s1xy). Speci®c values are assigned to the elastic
moduli and the far®eld loads, as shown in Table 1. Due to linearity, the results can be adjusted for
other material constants and loads. The calculated SIFs are presented in Table 1. It is rather di�cult to
establish a parameter for estimation of the error involved in the approximation formula. This is because
all the above parameters (mentioned in the previous paragraph) may contribute to this error. However,
from Eqs. (4.5.5a±d), it seems that the parameter, pj/2a=h/2a+sj d/2a, might be a good measure of the
error; this parameter combines the geometry and the elastic constants. Since this parameter is a complex
number, for simplicity, we establish the error range based only on the geometry, i.e., h/2a and d/2a.

The cases considered in Table 1 show that, for d/2a > 2 and h/2a > 1.5, the approximate formula
gives the values of the SIFs with an error of less than 2% when compared with the complete numerical
solution; compare this with the cases presented in Murakami (1987) for isotropic materials where, in
general, for the same range of d/2a and h/2a, the error is higher than 2%. When the cracks are close to
each other, the error can be larger than 2%, depending upon the geometry, material constants, and the
load. Note that for the cases when d and h are both non-zero (even for the special case of isotropy), a
far-®eld tensile load produces a Mode-II fracture component; see, e.g. CASE #8 of Table 1, which
shows a non-zero KII.

As an extension to this section, consider the practical problem of non-aligned periodic closed cracks;
the solution to this problem is obtained using the results presented in Section 4.2 and this section.

5. Method of the resultant-force

Consider, again, modeling a crack by continuously distributed edge dislocations along its line. The
boundary conditions can be taken into consideration either by tractions or by the resultant forces along
the crack line. In either way, the resulting coupled singular integral equations may be solved
numerically, e.g., collocation method (see, e.g. Erdogan et al., 1973; Gerasoulis, 1982). For illustration,
consider a traction-free crack in a plate. For the collocation method, the crack line is divided into N
equal sub-intervals, and the mid-points of the sub-intervals are taken as the collocation points. The
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Table 1

Normalized SIFs calculated Numerically from Eqs. (4.5.2a,b) and Approximately from Eqs. (4.5.5a±d) for various indicated elastic

constants, geometrical periodicity and loads; the normalization is as follows: ~K
�N, A�
I, II � K

�N, A�
I, II =

�������������������������������
pa�s12

yy � s12
xy �

q
:: For all cases, a=

1 and, for isotropic cases, E11/E22=1.000001 are used

# E11 E22 G12 n12 b h d s1yy s1xy ~K
�N�
I

~K
�A�
I

~K
�N�
II

~K
�A�
II

1 1 1 0.4 0.25 0 2.01 0 1 0 8.9934 7.5054 0 0

2 1 1 0.4 0.25 0 2.1 0 1 2.9865 2.7058 0 0

3 1 1 0.4 0.25 0 2.25 0 1 0 2.0154 1.9076 0 0

4 1 1 0.4 0.25 0 2.5 0 1 0 1.5651 1.5223 0 0

5 1 1 0.4 0.25 0 5 0 1 0 1.0753 1.0742 0 0

6 1 1 0.4 0.25 0 100 0 1 0 1.0002 1.0002 0 0

7 1 1 0.4 0.25 0 0 0.25 1 0 0.1994 0.0790 0 0

8 1 1 0.4 0.25 0 0.1 0.25 1 0 0.5297 0.5607 ÿ1.0280 ÿ1.1573
9 1 1 0.4 0.25 0 2.1 0.25 0 1 0.5025 0.4911 1.4438 1.5413

10 1 1 0.4 0.25 0 2.25 2.5 0 1 ÿ0.1794 ÿ0.1821 0.9342 0.9266

11 1 1 0.4 0.25 0 0 5 1 1 0.5995 0.5973 0.7491 0.7505

12 1 1 0.4 0.25 0 2.5 1 2 1 1.4011 1.4044 0.4121 0.4518

13 1 1 0.4 0.25 0 5 2 1 2 0.5033 0.5033 0.9008 0.9020

14 1 1 0.4 0.25 0 5 2 0 1 0.017 0.0175 0.9987 0.9997

15 1 1 0.4 0.25 0 100 100 1 1 0.7071 0.7071 0.7071 0.7070

16 2 1 0.4 0.25 0 2.25 0 1 0 2.0154 1.9076 0 0

17 3 1 0.4 0.35 0 0 0.5 0 1 0 0 1.7817 1.9493

18 6 1 0.6 0.30 0 2.1 0.5 1 5 0.3604 0.3771 0.8434 0.8978

19 10 1 0.6 0.30 0 2.5 0.1 5 1 1.5922 1.5434 0.5330 0.5085

20 1 2 0.8 0.20 0 100 100 1 1 0.7071 0.7071 0.7070 0.7070

21 1 5 0.8 0.40 0 100 0 10 1 0.9952 0.9952 0.0995 0.995

22 1 10 0.5 0.30 0 2.5 0 1 5 0.3069 0.2986 1.5346 1.4928

23 1 4 0.6 0.30 30 2.1 0.5 1 0 2.3045 2.2377 ÿ0.1474 ÿ0.392
24 1 4 0.6 0.30 30 2.1 1.0 1 0 1.7120 1.7105 ÿ0.2167 ÿ0.1616
25 8 1 1.0 0.25 45 0 0.2 1 4 1.3218 1.7185 3.5875 3.6153

26 1 1 0.8 0.30 60 5 10 1 1 0.6948 0.6949 0.6941 0.6940

27 1 10 0.4 0.35 90 4 2 100 1 1.1001 1.0996 ÿ0.0327 ÿ0.0310
28 4 1 0.4 0.35 90 100 0.1 1 1 0.7072 0.7072 0.7072 0.7072

30 2 1 0.4 0.30 ÿ30 0 1 1 2 0.0565 ÿ0.0298 1.3973 1.4883

31 2 1 0.4 0.30 ÿ30 0 2 1 2 0.1839 0.1576 1.1010 1.1236

32 2 1 0.4 0.30 ÿ30 0 3 1 2 0.2738 0.2655 1.0009 1.0076

33 2 1 0.4 0.30 ÿ30 0 4 1 2 0.3303 0.3271 0.9580 0.9605

34 5 1 0.6 0.25 ÿ45 2.5 5 1 0 1.0057 1.0068 ÿ0.0629 ÿ0.0632
35 1 2 0.8 0.25 ÿ60 3 1 0 1 0.0412 0.0472 0.9856 0.9969

36 1 10 0.8 0.40 ÿ90 2.1 0 1 10 0.2972 0.2692 2.9716 2.6924

37 10 1 0.6 0.30 5 0 100 1 0 0.9998 0.9998 0 0

38 1 4 0.4 0.25 ÿ10 100 100 1 1 0.7072 0.7072 0.7071 0.7071

39 1 1 0.4 0.25 0 0 0.25 1 0 0.1994 0.0792 0 0

40 1 1 0.4 0.25 0 0 0.35 0 1 0 0 2.4533 2.6999

41 1 1 0.4 0.25 0 0 0.5 0 1 0 0 2.0944 2.3075

42 1 1 0.4 0.25 0 2.05 0.2 0 1 0.6434 0.6291 1.5652 1.7001

43 1 1 0.4 0.25 0 0 0.35 1 0 0.2361 0.1102 0 0

44 5 1 0.8 0.25 30 0 0.35 1 0 0.2762 0.1492 0.0313 0.0276

45 5 1 0.8 0.25 30 0.2 0.35 1 0 0.3660 0.2984 ÿ1.1090 ÿ1.3057
46 1 1 0.4 0.25 0 2.15 0.6 0 1 0.0911 0.1105 0.9961 1.0415

47 1 1 0.4 0.25 0 2.15 1.0 0 1 ÿ0.1082 ÿ0.0879 0.8829 0.8901

48 1 8 0.6 0.35 45 2.15 0.6 0 1 0.2232 0.2321 1.0547 1.0965
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system of integral equations is then numerically solved by satisfying the traction-free conditions at the
collocation points taken along the crack line. Now, consider one of these sub-intervals taken on the
crack line (say, from point A to point B, i.e., the segment [A, B]). The method of traction-free boundary
conditions requires that the normal and shear stresses at the collocation point within this sub-interval be
zero. An alternative formulation is to require that the resultant force acting on the entire sub interval
[A, B] remains zero. In this formulation, the tractions are integrated along the sub-interval analytically.
While the traction method satis®es the traction condition at just one point (mid-point), the resultant-
force method involves the e�ect of the tractions all along the entire sub-interval (Azhdari, 1995). In view
of this, it is expected that the resultant-force condition would require fewer elements and less
computational e�ort to achieve a certain desired accuracy, when compared with the traction method.

The resultant force at point (x, y ) corresponding to a single edge dislocation, b0 � �b0x, b0y� at point
(x 0, y 0), is obtained by combining Eqs. (2.5e), (2.10a) and (2.10b). The result is

fx � 2 Real
�ÿ
A1s

2
1Y1 � A2s

2
2Y2

�
b0x ÿ �A1s1Y1 � A2s2Y2�b0x

�� cx, �5:1a�

fy � ÿ2 Real
��A1s1Y1 � A2s2Y2�b0x ÿ �A1Y1 � A2Y2�b0x

�� cy, �5:1b�

Yj � log
�
zj ÿ z0j

�
, Aj � 1

2piC11 ~sj
, �5:1c�

where cx and cy are constants to be determined.
To present the basic elements of the method, consider the case of an in®nitely extended anisotropic

plate containing a crack (straight or curved) subjected to some tractions on its boundaries. The resultant
forces at point (x, y ) corresponding to continuously distributed edge dislocations along the crack line, are

Fx�x, y� �
�a
ÿa

fx�x, y; x0, y0� ds�x0, y0� � Cx �5:2a�

and

Fy�x, y� �
�a
ÿa

fy�x, y; x0, y0� ds�x0, y0� � Cy, �5:2b�

where s, (x 0, y 0) $ [ÿa, a ]. In order to balance the resultant force on the crack line, Eqs. (5.2a) and
(5.2b) should be set equal to the resultant forces, F 0

x�x, y� and F 0
y�x, y� corresponding to the externally

applied tractions

2 Real

��a
ÿa

nÿ
A1s

2
1 log�z1 ÿ s� � A2s

2
2 log�z2 ÿ s��bx�s� ÿ �A1s1 log�z1 ÿ s�

� A2s2 log�z2 ÿ s��by�s�
o

ds

�
� F 0

x�x, y� � Cx

�5:3a�

ÿ2 Real

��a
ÿa

��A1s1log�z1 ÿ s� � A2s2 log�z2 ÿ s��bx�s� ÿ �A1 log�z1 ÿ s�

� A2log�z2 ÿ s��by�s�
	
ds

�
� F 0

y�x, y� � Cy:

�5:3b�
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These are typical `coupled singular integral equations', to be solved for the unknown functions bx(s ) and
by(s ). They can be solved numerically, subject to the auxiliary conditions, Eqs. (C3a) and (C2).

The integral equations (Eqs. (5.3a) and (5.3b)) are written with the dislocation functions as the
primary unknowns. We rewrite these equations in terms of the crack-opening displacement (COD), Ux

and Uy. Performing integration-by-parts and using Eqs. (C4a,b), we obtain

2 Real

"�a
ÿa

(�
A1s

2
1

z1 ÿ s
� A2s

2
2

z2 ÿ s

�
Ux�s� ÿ

�
A1s1
z1 ÿ s

� A2s2
z2 ÿ s

�
Uy�s�

)
ds

#
� F 0

x�x, y� � Cx �5:4a�

and

ÿ2 Real

��a
ÿa

��
A1s1
z1 ÿ s

� A2s2
z2 ÿ s

�
Ux�s� ÿ

�
A1

z1 ÿ s
� A2

z2 ÿ s

�
Uy�s�

�
ds

�
� F 0

y�x, y� � Cy, �5:4b�

where Ux(s=2a )=0 and Uy(s=2a )=0 are also used.
These new integral equations, written in terms of the two components of COD, present advantages

such as:

1. the `log' functions have disappeared;
2. unlike bx(s ) and by(s ), the unknowns of the problem, Ux(s ) and Uy(s ), are not singular; and
3. the consistency conditions (Eq. (C3a)) are simpli®ed to Ux(s=2a )=0 and Uy(s=2a )=0.

These lead to a more e�ective numerical routine.
To illustrate the method, consider a simple example of a straight crack in a plate subjected to far®eld

uniform tractions which produce F 0
x�x, y� � xs1xyÿys1xx and F 0

y�x, y� � xs1yyÿys1xy: Let the crack lie on
the x-axis, so that y=0, which simpli®es Eqs. (5.4a) and (5.4b) to

2 Real

"
1

2piC11

�a
ÿa

(�
s21
~s1
� s22

~s2

�
Ux�s� ÿ

�
s1
~s1
� s2

~s2

�
Uy�s�

)
ds

xÿ s

#
� xs1xy, �5:5a�

2 Real

"
ÿ1

2piC11

�a
ÿa

(�
s1
~s1
� s2

~s2

�
Ux�s� ÿ

�
1

~s1
� 1

~s2

�
Uy�s�

)
ds

xÿ s

#
� xs1yy: �5:5b�

A numerical routine can be set up for this set of coupled Cauchy-type-singular integral equations.
However, this simple case can be solved analytically (see Eq. (B1e)). The analytical results for Ux and
Uy are identical to those obtained in Section 4.1 (see Eqs. (4.1.14a) and (4.1.14b)). In brief, it is expected
that Eqs. (5.3a) and (5.3b) leads to more accuracy when compared with the traction method boundary
conditions. Moreover, Eqs. (5.4a) and (5.4b) are easier than Eqs. (5.3a) and (5.3b) to be implemented
into a numerical routine.
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Appendix A. The characteristic equation and related formulae

For the orthotropic materials, C16=C26=0. The characteristics equation Eq. (2.3) then reduces to

Ĉ11ŝ
4 �

ÿ
2Ĉ12 � Ĉ66

�
ŝ2 � Ĉ22 � 0, �A1�

where the superposed caret, ^, denotes components with respect to the x1, x2-coordinate system of Fig. 1.
The on-axis orthotropic constants can be written in terms of the engineering material constants, Young's
moduli, shear modulus and Poissons ratios, as

Ĉ11 � 1

E11
, Ĉ22 � 1

E22
, Ĉ66 � 1

E66
� 1

G12
, Ĉ12 � ÿn12

E11
� ÿn21

E22
; �A2�

note that for isotropic materials, E11=E22=E, E66=G and n12=n21=n, where E= 2G(1+n ). Now, Eq.
(A1) becomes ŝ4 � 2qŝ2 � p2 � 0, where p and q are

p2 � Ĉ22

Ĉ11

� E11

E22
, q � 2Ĉ12 � Ĉ66

2Ĉ11

� E11

2E66
ÿ n12: �A3�

The four roots of this quadric equation are ŝ1 � a1 � ib1, ŝ2 � a2 � ib2, ŝ3 � ŝ1 and ŝ4 � ŝ2, where

a1 �
�����������
pÿ q
p ���

2
p , a2 � ÿ

�����������
pÿ q
p ���

2
p , b1 � b2 �

�����������
p� q
p ���

2
p for prq; �A4a�

a1 � a2 � 0, b1 �
�����������
q� p
p � �����������

qÿ p
p���
2
p , b2 �

�����������
q� p
p ÿ �����������

qÿ p
p���
2
p , for prq: �A4b�

These equations give ŝ1 and ŝ2 in terms of the engineering constants explicitly. It is noteworthy that
for this class of materials (orthotropic), and with respect to the x1 x2-coordinate system, the roots of the
characteristic equation are either ŝ1 � a0 � ib0 and ŝ2 � ÿa0 � ib0 or ŝ1 � ib1 and ŝ2 � ib2: However, it
is interesting that, for either case, the relation ŝ3ŝ4 ÿ ŝ1ŝ2 � 0 (or equivalently, a1b2+a2b1=0) is always
true; this term appears in a number of formulae, e.g. (Eqs. (A5b) and (A5f)). Once ŝ1 and ŝ2 are
calculated by Eqs. (A4a,b), we use the transformation formula (2.9b) to obtain s1 and s2 in other
coordinate systems (e.g. the x, y-coordinate system of Fig. 1, with o=ÿy ).

The following expressions are used in various equations in this paper:

1

~s1
� 1

~s2
� 1

~s3
ÿ 1

~s4
� s1 � s2 ÿ s3 ÿ s4
�s1 ÿ s3��s1 ÿ s4��s2 ÿ s3��s2 ÿ s4� �

iD1

D0
, �A5a�

s1
~s1
� s2

~s2
� ÿs3

~s3
ÿ s4

~s4
� s3s4 ÿ s1s2
�s1 ÿ s3��s1 ÿ s4��s2 ÿ s3��s2 ÿ s4� �

iD2

D0
�A5b�

and

s21
~s1
� s22

~s2
� ÿs

2
3

~s3
ÿ s24

~s4
� s1s3�s4 ÿ s2� � s2s4�s3 ÿ s1�
�s1 ÿ s3��s1 ÿ s4��s2 ÿ s3��s2 ÿ s4� �

iD3

D0
, �A5c�

where

D0 � �s1 ÿ s3��s1 ÿ s4��s2 ÿ s3��s2 ÿ s4� � 4b1b2
�
�a1 ÿ a2� 2 � �b1 � b2�2

�
> 0, �A5d�
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D1 � ÿi�s1 � s2 ÿ s3 ÿ s4� � 2�b1 � b2� > 0, �A5e�

D2 � ÿi�s3s4 ÿ s1s2� � ÿ2�a1b2 � a2b1�, �A5f�
and

D3 � ÿi
�
s1s3�s4 ÿ s2� � s2s4�s3 ÿ s1�

� � ÿ2hb1�a2
2 � b2

2 � � b2�a2
1 � b2

1 �
i
< 0; �A5g�

D0 � ÿ�D1D3 � D2D2� > 0, D3 � s1s2D1 � �s1 � s2�D2 < 0, �A6a�

C22 � s1s2s3s4C11 �
�
a2
1 � b2

1

��
a2
2 � b2

2

�
C11, �A6b�

2C16 � �s1 � s2 � s3 � s4�C11 � 2�a1 � a2�C11, �A6c�

2C26 � �s1s2�s3 � s4� � s3s4�s1 � s2��C11 � 2
h
a1
�
a2
2 � b2

2

�
� a2

�
a2
1 � b2

1

�i
C11, �A6d�

2C12 � C66 � �s1�s2 � s3 � s4� � s2�s3 � s4� � s3s4�C11 �
h
a2
1 � b2

1 � a2
2 � b2

2 � 4a1a2
i
C11, �A6e�

a� �a � ÿ2D2

D3
, aÿ �a �22i

������
D0

p
D3

, a�a � ÿD1

D3
�A6f�

Parameters a and C0 de®ned in Section 3 are, in general, some functions of the material constants.
However, for the special case of orthotropy (D2=0), these parameters simplify to

a2 � 1

s1s2
, C0 � a

C12=C11 ÿ s1s2
s1 � s2

, �A7�

where, for both orthotropic cases reported in Eqs. (A4a,b),

s1s2 � ÿp � ÿ
���������
C22

C11

r
, s1 � s2 � i

������������������
2� p� q�

p
� i

���������������������������������������������������
2

 ���������
C22

C11

r
� 2C12 � C66

2C11

!vuut : �A8�

Thus, for orthotropic media, Eqs. (A7), (A8) show that a is purely imaginary and C0 is a real number;
these facts are helpful for simplifying the formulae of Section 3 from the anisotropic case to orthotropic
case. For plane stress, the Cij's are given by Eq. (A2) and thus, a and C0 can be easily written in terms
of the on-axis orthotropic material constants. For plane strain, the Cij's of Eq. (A2) should be replaced
by CijÿCi3Cj3/C33. Nevertheless, for the case of isotropy, Eq. (A7) gives a=i, and results in C0=(1ÿn )/2
and C0=(1ÿ2n )/(1ÿn )/2 for the plane-stress and plane-strain conditions, respectively.

Appendix B. The solution of relevant integrals

The integral equation (Hilbert problem),
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A

�a
ÿa

F�t�
xÿ t

dt� P�x� � 0, ÿ aRxRa, �B1a�

has the following solution (Muskhelishvili, 1953):

F�x� � 1

p2A

1�����������������
a2 ÿ x 2
p

�a
ÿa

���������������
a2 ÿ t 2
p

xÿ t
P�t�dt� C0

p
�����������������
a2 ÿ x 2
p , �B1b�

where

C0 �
�a
ÿa

F�t� dx �B1c�

serves as an auxiliary condition to render the solution unique. In particular, when P(x )=P0=constant
and C0=0, then

F�x� � P0

pA
x�����������������

a2 ÿ x 2
p : �B1d�

For the case when the unknown function F(x ) is bounded at both ends (x=2a ), the solution of Eq.
(B1a) is:

F�x� �
�����������������
a2 ÿ x 2
p

p2A

�a
ÿa

P�t�
�xÿ t�

���������������
a2 ÿ t2
p dt, �B1e�

provided that�a
ÿa

P�x������������������
a2 ÿ x 2
p dx � 0: �B1f�

The following de®nite integrals are valid for w ( [ÿa, +a ], w0 ( [ÿa, +a ], b $ [ÿa, +a ], and x $ [ÿa,
+a ]: �a

ÿa

1

�w2t�
���������������
a2 ÿ t 2
p dt � p�����������������

w2 ÿ a2
p , �B2a�

�a
ÿa

���������������
a2 ÿ t2
p

wÿ t
dt � p

ÿ �����������������
w2 ÿ a2
p

ÿ w
�
, �B2b�

�a
ÿa

t

�wÿ t�
���������������
a2 ÿ t2
p dt � ÿp

�
1ÿ w�����������������

w2 ÿ a2
p

�
, �B2c�

�a
ÿa

1

�wÿ t��t2w0�
���������������
a2 ÿ t2
p dt � p

w2w0

8<: 1�����������������
w2 ÿ a2
p 2

1�����������������
w2
0 ÿ a2

q 9=;, �B2d�

�a
ÿa

���������������
a2 ÿ t2
p

�tÿ w��tÿ w0� dt � p
wÿ w0

� �����������������
w2 ÿ a2
p

ÿ
�����������������
w2
0 ÿ a2

q
ÿ �wÿ w0�

�
, �B2e�
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�a
ÿa

1

�wÿ t��tÿ b�
���������������
a2 ÿ t2
p dt � p

wÿ b

�
1�����������������

w2 ÿ a2
p

�
, �B2f�

�a
ÿa

���������������
a2 ÿ t2
p

xÿ t

1

t3w
dt � p

 
12

�����������������
w2 ÿ a2
p

x3w

!
�B2g�

and �b
ÿa

����������������������������a� t��bÿ t�p
tÿ x

dt � ÿpx� bÿ a

2
p for ÿ a < x < b �B3a�

and �b
ÿa

����������������������������a� t��bÿ t�p
tÿ x

dt � ÿpx� bÿ a

2
p� p

�����������������������������
�a� x��xÿ b�

p
for x > b: �B3b�

Appendix C. The solution method for a relevant system of singular integral equations

Some of the problems discussed in this paper involve a system of coupled singular integral equations
of the form�1

ÿ1

Mi1�t, s�bx�t� �Mi2�t, s�by�t�
tÿ s

dt�
�1
ÿ1
�Ki1�t, s�bx�t� � Ki2�t, s�by�t��dt � Pi�s�, �C1�

where i=1, 2 and the coordinate along the line of discontinuity (e.g. [ÿa, a ] for an initial crack and [0,
L ] for a kink) is normalized to t=[ÿ1, 1] and s=[ÿ1, 1]. In Eq. (C1), the functions Mij and the input
functions Pi are known, and the kernels Kij are also known and bounded in t=[ÿ1, 1]. For the
dislocation density functions, bx(t ) and by(t ), a general form of

bx�t� � Bx�t��������������
1ÿ t2
p , by�t� � By�t��������������

1ÿ t2
p �C2�

is assumed, where the unknown functions Bx(t ) and By(t ) are continuous and smooth. To render the
solution of Eq. (C1) unique, the consistency (or auxiliary) conditions�1

ÿ1
bx�t�dt � 0,

�1
ÿ1

by�t�dt � 0, �C3a�

Bx�t � ÿ1� � 0, By�t � ÿ1� � 0, �C3b�
are used, where Eq. (C3a) is for the case of an existing internal crack, and Eq. (C3b) is for a kink with
its knee at t=ÿ1. The ®rst two conditions ensure that crack is closed at both ends and the other two
compensate for the fact that the singularity at the kink knee is less than one half (see Bogy, 1971; Obata
et al., 1989; Azhdari, 1995).

Except for special cases (see Eq. (B1a) and also Sections 4 and 5), the pair of singular integral
equations, Eq. (C1), must be solved numerically. As an example, one numerical method by Gerasoulis
(1982), is brie¯y explained below; for alternative methods, see the references cited therein. First, Bx(t )
and By(t ) are interpolated using N piece-wise quadratic polynomials; this creates (2N + 1) nodal
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unknowns for Bx and likewise for By. Then, the singular parts of the integrals are integrated
analytically, and the non-singular parts are obtained numerically. Eq. (C1) is satis®ed at 2(2N )
collocation points, each one of which is chosen to be in the middle of every two consecutive nodal
points; this generates 2(2N ) equations. Taking into consideration the auxilliary conditions (Eqs. (C3a)
and (C3b)), a system of 2(2N + 1) algebraic linear equations is obtained. Once this system is solved,
values of Bx and By, at 2N + 1 distinct points along the crack (or kink) line, are obtained. Finally,
considering the following relations between dislocation density functions and the CODs:

Ux�z� � Ux�z0� ÿ
�z
z0

bx�t� dt, bx�t� � ÿdUx�t�
dt

, �C4a�

Uy�z� � Uy�z0� ÿ
�z
z0

by�t�dt, bx�t� � ÿdUx�t�
dt

, �C4b�

the COD at any point along the crack or kink line, is calculated.

Appendix D. Near-tip (asymptotic) ®elds, stress intensity factors (SIFs) and fracture critera

D.1. Conventional SIFs, the asymptotic stresses and displacements near the crack tip

Consider a crack (curved or straight) in a plate and assume that the roots of the characteristic
equation are calculated with respect to the body coordinate systems, x±y. The conventional stress
intensity factors, KI and KII, at the tip of this crack are de®ned as:

KI � lim
z�40

h ��������
2pz

p
sZZ
i
, KII � lim

z�40

h ��������
2pz

p
szZ
i
, �D1�

where the z±Z coordinate system is attached to the crack-tip and the z-axis is tangent to the crack at its
tip, making an angle ot (`t' stands for tip) with the x-axis. Now, consider a point near the crack tip (the
coordinates of this point with respect to the z±Z coordinate system are r and y; the distance r is assumed
to be very small in comparison with the crack length). The stresses and displacements at this point in
terms of KI and KII are

szz � 1�������
2pr
p Real

"
1

ŝ1 ÿ ŝ2

(
ÿŝ21 �ŝ2KI � KII �������������������������������

cos y� ŝ1 sin y
p � ŝ22 �ŝ1KI � KII �������������������������������

cos y� ŝ2 sin y
p

)#
, �D2a�

sZZ � 1�������
2pr
p Real

�
1

ŝ1 ÿ ŝ2

� ÿŝ2KI ÿ KII������������������������������
cos y� ŝ1 sin y
p � ŝ1KI � KII������������������������������

cos y� ŝ2 sin y
p

��
, �D2b�

szZ � 1�������
2pr
p Real

�
1

ŝ1 ÿ ŝ2

�
ŝ1�ŝ2KI � KII �������������������������������
cos y� ŝ1 sin y
p � ÿŝ2�ŝ1KI � KII �������������������������������

cos y� ŝ2 sin y
p

��
, �D2c�

uz �
������
2r

p

r
Real

�
1

ŝ1 ÿ ŝ2

n
ÿ p̂1�ŝ2KI � KII �

������������������������������
cos y� ŝ1 sin y

p
� p̂2�ŝ1KI � KII �

������������������������������
cos y� ŝ2 sin y

p o�
�D3a�
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and

uZ �
������
2r

p

r
Real

�
1

ŝ1 ÿ ŝ2

n
ÿ q̂1�ŝ2KI � KII �

�����������������������������
cos y� ŝ1 sin y

p
� q̂2�ŝ1KI � KII �

������������������������������
cos y� ŝ2 sin y

p o�
, �D3b�

where r �
����������������
z2 � Z2

q
, y0arctan(Z/z ) and the parameters ŝj, p̂j and q̂j ( j = 1, 2) are obtained from sj, pj

and qj through a rotation by the angle ot, see Eq. (2.9b). These expressions are valid for the points in a
small vicinity of the crack tip.

A more useful form for the displacement ®elds is given in terms of the crack-opening displacements
(COD). From Eqs. (D3a) and (D3b), the CODs are

�uz� �
������
2r

p

r
2 Real

�
i

ŝ1 ÿ ŝ2

�
KI

ÿ
ŝ1p̂2 ÿ ŝ2p̂1

�� KII

ÿ
p̂2 ÿ p̂1

�	� �D4a�

and

�uZ� �
������
2r

p

r
2 Real

�
i

ŝ1 ÿ ŝ2

�
KI

ÿ
ŝ1q̂2 ÿ ŝ2q̂1

�� KII

ÿ
q̂2 ÿ q̂1

�	�
, �D4b�

where r is very small and denotes a point along the crack line (r is on the negative side of the z-axis). If
the boundary-value problem (BVP) of a kinked crack is solved via a combination of analytical/
numerical/asymptotic methods, then KI and KII are usually known: the use of Eqs. (D2a), (D2b), (D2c),
(D3a), (D3b), (D4a) and (D4b) gives the stresses and displacements in the crack-tip vicinity. On the
other hand, if the BVP is solved by, e.g., ®nite-element method, then usually CODs are known; in this
case, Eqs. (D4a) and (D4b) gives the KI and KII. For this, CODs at a su�ciently small r should be used
in (D4a,b).

If a BVP is solved by the method of `distribution of edge-dislocations along the crack line', then
naturally, the edge-dislocation density function along the crack line is calculated and thus known; see
Appendix C. Denote the x- and y-components of the regular part of the edge-dislocation density at the
crack tip by Bx(s=L ) and By(s=L ), where s measures length along the crack line and L is the crack or
the kink length. Assuming that s= 0 is where the left crack-tip or the kink-knee is located, then KI and
KII at the right crack tip can be calculated by (Obata et al., 1989)

KI � p

�������
2p
L

r
�H11Bx�s � L� �H12By�s � L��, KII � p

�������
2p
L

r
�H21Bx�s � L� �H22By�s � L��, �D5a�

where

H11 � 2 Real

"
1

2piC11

�
s1
~s1
F1 � s2

~s2
F2

�#
, H12 � 2 Real

� ÿ1
2piC11

�
1

~s1
F1 � 1

~s2
F2

��
, �D5b�

H21 � 2 Real

"
1

2piC11

�
s1
~s1
G1 � s2

~s2
G2

�#
, H22 � 2 Real

� ÿ1
2piC11

�
1

~s1
G1 � 1

~s2
G2

��
, �D5c�

where

Fj � cos ot � sj sin ot, Gj � sin ot ÿ sj cos ot: �D5d�
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D.2. Hoop and shear stress intensity factors around the crack tip

Once KI and KII are calculated at a crack or kink tip, the stress ®eld in the vicinity of the tip is
known and, thus, the hoop stress intensity factor (HSIF or Kyy ) and the shear stress intensity factor
(SSIF or Kry ) can be calculated easily (Azhdari, 1995). The following are the formulae for HSIF and
SSIF at angle y measured with respect to the z-axis:

Kyy � K11KI � K12KII, Kry � K21KI � K22KII, �D6a�
where

K11 � Real

�
1

ŝ2 ÿ ŝ1

�
ŝ2�c� ŝ1s�3=2ÿŝ1�c� ŝ2s�3=2

	�
, �D6b�

K12 � Real

�
1

ŝ2 ÿ ŝ1

�
�c� ŝ1s�3=2ÿ�c� ŝ2s�3=2

	�
, �D6c�

K21 � Real

�
1

ŝ2 ÿ ŝ1

�
ŝ2�c� ŝ1s�1=2�sÿ ŝ1c� ÿ ŝ1�c� ŝ2s�1=2�sÿ ŝ2c�

	�
�D6d�

and

K22 � Real

�
1

ŝ2 ÿ ŝ1

�
�c� ŝ1s�1=2�sÿ ŝ1c� ÿ �c� ŝ2s�1=2�sÿ ŝ2c�

	�
, �D6e�

where s = sin y, c = cos y and ŝi is the transformed form of si from the x±y to the z±Z coordinate
system attached at the tip (see Eq. (2.9b)). Note that, angle y is measured with respect to the z-axis (ÿp
R yR p ) and, thus, this angle with respect to the x-axis is o=ot+y.

D.3. Fracture criteria: max-hoop stress intensity factor and max-Mode-I SIF

As can be seen from Eqs. (D6a±e), the two equations, @Kyy/@y=0 and Kry=0, are identical. Thus, the
critical angle y=yc, at which Kyy is maximum, renders Kry zero. This is the basis for the max-HSIF (or
equivalently, zero-SSIF) fracture criterion. Accordingly, crack (or a kink) may propagate in the
direction for which Kyy is maximum (see Azhdari and Nemat-Nasser, 1996a and 1998).

More appropriate is the max-KI fracture criterion. Consider a crack and the corresponding coordinate
systems x±y and z±Z, as de®ned above. Assume, now, a vanishingly small kink of length l at the tip of
this crack, making an angle g, measured with respect to the z-axis. This new con®guration (crack plus
the kink) creates a new BVP. After solving this BVP (almost always numerically), the corresponding KI

and KII at the tip of the kink can be calculated via, e.g. (D4 or D5); we denote these SIFs by K
�k�
I and

K
�k�
II , where superscript `(k)' stands for kink. The conventional max-KI (or equivalently, zero-KII)

fracture criterion states that a pre-existing crack propagates in the critical direction of g=gc, for which
K
�k�
I is a maximum (or K

�k�
II � 0). It is interesting to note that the values of K

�k�
I � 0 and K

�k�
II � 0 are

independent of the kink length l when it is vanishingly small (see Azhdari and Nemat-Nasser, 1996b).
Note that the determination of the critical kinking-angle by the maxÿ K

�k�
I is computationally much

more expensive than the one computed via the max-HSIF criterion.
The max-HSIF and maxÿ K

�k�
I fracture criteria do not, in general, predict the same propagation path

for a given problem (see Azhdari and Nemat-Nasser, 1996a). However, for various combinations of
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relevant parameters (for di�erent material properties, material symmetry orientation and loading), and
for small kink angles (within the range of28 degrees), the magnitude of the SIFs predicted by these two
fracture criteria are less than 1% apart; this holds for much larger kink angles when the material is
isotropic. Moreover, Azhdari and Nemat-Nasser (1996b) showed that the kink-direction predictions
made by the maximum energy-release rate criterion, in general, do not accord with either the ones
predicted by the max-HSIF or by the maxÿ K

�k�
I criteria.
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